Distributivity of implication In EX5, the following distributivity formula was proved: $$[X \Rightarrow (Y \Rightarrow Z) \equiv (X \Rightarrow Y) \Rightarrow (X \Rightarrow Z)] ;$$ in other words, " \Rightarrow distributes over \Rightarrow from the left", or perhaps more accurately, " $(X\Rightarrow)$ distributes over \Rightarrow ". In this note, I would like to explore distributivity from the right, in general: $$(0) \qquad [\quad (X \diamond Y) \Rightarrow Z \quad \equiv \quad ??? \quad] \qquad .$$ When it comes to distributivity, \vee is certainly the nicest operator, as it distributes over \equiv and \vee by postulate, and hence over \wedge and \Rightarrow as well, which are defined in terms of \equiv and \vee . So I propose to begin our exploration as follows: $$(X \diamond Y) \Rightarrow Z$$ $$\equiv \{ \Rightarrow \text{ into } \neg/\vee \} \}$$ $$\neg(X \diamond Y) \vee Z$$ $$\equiv \{ \text{ see below: } \neg \text{ over } \diamond \} \}$$ $$(f.X \circ g.Y) \vee Z$$ $$\equiv \{ \text{ see below: } \vee \text{ over } \circ \} \}$$ $$(f.X \vee Z) \circ (g.Y \vee Z)$$ $$\equiv \{ \neg/\vee \text{ into } \Rightarrow \} \}$$ $$(\neg f.X \Rightarrow Z) \circ (\neg g.Y \Rightarrow Z)$$ This essentially completes the investigation. We just need to refine $\,\diamond\,\,,\,\,\circ\,\,,\,\,f\,\,,\,\,$ and $\,g\,\,,\,\,$ according to: $$(1a) \quad [\neg (X \diamond Y) \equiv f.X \circ g.Y]$$ (1b) $$\circ$$ is among \wedge , \vee , \equiv , \Rightarrow , \Leftarrow . If we want to refine (0) into a "pure" distributivity shape, we might want to take $[f.X \equiv \neg X]$ and $[g.X \equiv \neg X]$, so that (0) becomes: $$[(X \diamond Y) \Rightarrow Z \equiv (X \Rightarrow Z) \circ (Y \Rightarrow Z)]$$ on account of double negation. Then (1a) becomes: $$[\neg(X \diamond Y) \equiv \neg X \circ \neg Y] ,$$ which has the obvious instantiations $\diamond, \circ := \land, \lor$ and $\diamond, \circ := \lor, \land$, and the less obvious $\diamond, \circ := \not\equiv, \equiv$. (Also $\diamond, \circ := \equiv, \not\equiv$ would work, but then (1b) is not satisfied: note that \lor does not distribute over $\not\equiv !$) So we have: $$[X \wedge Y \Rightarrow Z \equiv (X \Rightarrow Z) \vee (Y \Rightarrow Z)]$$ $$[X \vee Y \Rightarrow Z \equiv (X \Rightarrow Z) \wedge (Y \Rightarrow Z)]$$ $$[(X \not\equiv Y) \Rightarrow Z \equiv (X \Rightarrow Z) \equiv (Y \Rightarrow Z)]$$ Nice! * * This choice for f and g settles the choices of \wedge , \vee , and $\not\equiv$ for \diamond . So now let us investigate \Rightarrow , \Leftarrow , and \equiv for \diamond . If we take $\diamond := \Rightarrow$, then (1a) becomes: $$[\quad \neg(X \Rightarrow Y) \quad \equiv \quad f.X \, \circ \, g.Y \quad] \qquad ,$$ so the choices $[f.X \equiv X]$ and $[g.Y \equiv \neg Y]$ and $\circ = \land$ are forced upon us, yielding the following refinement of (0): $$[(X \Rightarrow Y) \Rightarrow Z \equiv (\neg X \Rightarrow Z) \land (Y \Rightarrow Z)]$$ or $$[(X \Rightarrow Y) \Rightarrow Z \equiv (X \lor Z) \land (Y \Rightarrow Z)] .$$ Similarly, we get: $$[(X \Leftarrow Y) \Rightarrow Z \equiv (X \Rightarrow Z) \land (\neg Y \Rightarrow Z)]$$ or $$[(X \Leftarrow Y) \Rightarrow Z \equiv (X \Rightarrow Z) \land (Y \lor Z)] .$$ Finally, if we take $\diamond := \equiv$, then (1a) becomes: $$[\neg (X \equiv Y) \equiv f.X \circ g.Y] .$$ On account of: $$[\neg (X \equiv Y) \equiv \neg X \equiv Y]$$ and $$[\neg (X \equiv Y) \equiv X \equiv \neg Y]$$ we take $\circ := \equiv$, and either: $$[f.X \equiv \neg X] \qquad \text{and} \qquad [g.X \equiv X] \qquad , \qquad \text{or}$$ $$[f.X \equiv X] \qquad \text{and} \qquad [g.X \equiv \neg X] \qquad .$$ The former choice yields: $$[\quad (X \equiv Y) \Rightarrow Z \quad \equiv \quad X \Rightarrow Z \quad \equiv \quad \neg Y \Rightarrow Z \quad]$$ or $$[\quad (X \equiv Y) \Rightarrow Z \quad \equiv \quad X \Rightarrow Z \quad \equiv \quad Y \lor Z \quad]$$ while the latter choice yields: $$[\quad (X \equiv Y) \Rightarrow Z \quad \equiv \quad \neg X \Rightarrow Z \quad \equiv \quad Y \Rightarrow Z \quad] \qquad \text{or}$$ $$[\quad (X \equiv Y) \Rightarrow Z \quad \equiv \quad X \lor Z \quad \equiv \quad Y \Rightarrow Z \quad] \qquad .$$ * * -1- In sum, we have the following refinements of (0): $$\bullet \qquad [\quad X \land Y \Rightarrow Z \quad \equiv \quad (X \Rightarrow Z) \lor (Y \Rightarrow Z) \quad]$$ $$\bullet \qquad [X \lor Y \Rightarrow Z \equiv (X \Rightarrow Z) \land (Y \Rightarrow Z)]$$ $$\bullet \qquad [\quad (X \not\equiv Y) \Rightarrow Z \quad \equiv \quad X \Rightarrow Z \quad \equiv \quad Y \Rightarrow Z \quad]$$ $$[(X \Rightarrow Y) \Rightarrow Z \equiv (\neg X \Rightarrow Z) \land (Y \Rightarrow Z)]$$ $$[(X \Rightarrow Y) \Rightarrow Z \equiv (X \lor Z) \land (Y \Rightarrow Z)]$$ What a lovely investigation! NYC, 4 October 2009 Jeremy Weissmann jeremy @ mathmeth.com