A necessary and sufficient condition for rational roots

K. Rustan M. Leino and Rajit Manohar and Greg Nelson 3 May 1994

We show the necessary and sufficient condition under, for positive integers n, m, k where the two latter a relative prime, $n^{m/k}$ is a rational. The proof is a slight extension of the one in [KRML 30], which, in turn is an extension of the proof in [KRML 0].

For any prime p and positive integer n, we let P.p.n denote the number of occurrences of p in a prime factorization of n. Let n, m, k be positive integers such that m and k are relative prime. Then,

```
n^{m/k} is rational
       { def. rational }
\langle \exists x, y \mid y \neq 0 \rhd n^{m/\hat{k}} = x/y \rangle
  \{\sqrt{n}>0, \text{ and math }\}
\langle \exists x, y \mid x > 0 \land y > 0 \triangleright n^{m/k} = x/y \rangle
     { math }
\langle \, \exists \, x,y \mid x>0 \ \wedge \ y>0 \, \rhd \ n^{\,m} \cdot y^{\,k} = x^{\,k} \, \, \rangle
  { prime factorization }
\langle\,\exists\,x,y\mid x>0 \ \wedge\ y>0 \ \triangleright\ \langle\, \overset{\cdot}{\forall}\, p\, \triangleright\ P.p.(\,n^m\cdot y^k)=P.p.(x^k)\,\,\rangle\,\,\rangle
   \{ P.p.(a \cdot b) = P.p.a + P.p.b \}
\langle \exists x, y \mid x > 0 \land y > 0 \triangleright \langle \forall p \triangleright m \cdot P.p.n + k \cdot P.p.y = k \cdot P.p.x \rangle \rangle
    \{ a + b = c \wedge k | b \wedge k | c \Rightarrow k | a \}
\langle \exists x, y \mid x > 0 \land y > 0 \triangleright \langle \forall p \triangleright k | m \cdot P.p.n \rangle \rangle
   \{ \text{ range of } x, y \text{ nonempty } \}
\langle \forall p \triangleright k \text{ divides } m \cdot P.p.n \rangle
   \{ k \text{ and } m \text{ are relative prime } \}
\langle \forall p \triangleright k \text{ divides} P.p.n \rangle
   { prime factorization }
\langle \exists r \mid r > 0 \triangleright n = r^k \rangle
```

For the other direction, if n has the form r^k , then $(r^k)^{m/k} = r^m$, which is integral, and thus also rational. Hence, we have established, for all positive n, m, k for which m and k are relative prime,

```
n^{m/k} rational \equiv \langle \exists r \mid r > 0 \triangleright n = r^k \rangle
```

As a consequence, with m, k := 1, 2, we have

 \sqrt{n} rational $\equiv n$ is a perfect square , which is the result of [KRML 30].

References

[KRML 0] K.R.M. Leino. $\sqrt{2}$ is irrational, revisited, 1991. [KRML 30] K.R.M. Leino and Greg Nelson. The rational square roots are the perfect squares, 1994.