
KRML 41 / HPH 23 -0

Semaphore speci�cations: Larch meets Martin

H. Peter Hofstee, K. Rustan M. Leino, Jan L.A. van de Snepscheut

California Institute of Technology

18 August 1994

We present a Larch [2] speci�cation of semaphores that satis�es Alain Martin's semaphore axioms

[6]. As a result, the semaphore speci�cation becomes strong enough to enable the implementation of fair

semaphores from unfair ones. As Larch cannot express fairness, this is the best semaphore speci�cation

we can hope for in Larch.

0 Introduction

The information contained in this note is a late write-up of a group meeting at Caltech during the fall

of 1992. Since then, the last-mentioned author passed away; hence, any mistakes in this presentation are

solely due to the other authors.

The group meeting started with an expressed disappointment in the Larch speci�cation of procedures

Acquire and Release in [0].

private var holder : array Mutex of T

initially h 8m :Mutex . holder [m] = nil i

procedure Acquire(m :Mutex);

modi�es holder [m]

when holder [m] = nil

ensures holder

0

[m] = current

procedure Release(m :Mutex);

requires holder [m] = current

modi�es holder [m]

ensures holder

0

[m] = nil

Type T signi�es Thread :T , the type representing threads (light-weight processes) in Modula-3. The

special value current refers to the value of the calling process. No process takes the value nil . Procedure

Acquire on a mutex m is like a P operation on a semaphore [1], and Release is like a V operation but

with the restriction that the process that executes Release must be the \holder" of the lock. In Larch,

primes indicate the post-value of variables.

As is usual, we assume a process that acquires a lock on a semaphore will eventually release it. Then,

a semaphore is said to be fair if no process is suspended on a P operation forever. A semaphore may or

may not be fair, but fair semaphores can be implemented using three unfair ones [7], or two unfair ones

KRML 41 / HPH 23 -1

[3]. (In our opinion, [4] and [5] are improvements on the proof of [3].) The correctness of these algorithms

depends on the following axioms [6]:

A0 : 0 � s � 1

A1 : cP + s = cV + s

0

A2 : qP = 0 _ s = 0 ;

where s is the integer value of the semaphore, the initial value of which is s

0

, cOP is the number of

completed OP operations, and qOP is the number of suspended OP operations. Actually, Martin

uses only 0 � s for A0 , but we have added the other bound to show that the semaphores are binary.

Note that V operations never suspend.

Our disappointment with the speci�cation in [0] arose from that it is not strong enough to prove

Martin's axioms. Therefore, one cannot build fair semaphores from the speci�ed ones. [0] also includes

speci�cations for procedures P and V , but those are even weaker than the ones for Acquire and

Release . We start our hunt for a stronger speci�cation.

1 Larch speci�cation

We give our Larch speci�cations for procedures P and V .

private var holder : T

q : set of T

i : integer

initially holder = nil^q = fg ^ i = 1

procedure P();

modi�es holder ; q ; i

composition of Queue;Dequeue end

action Queue

requires holder 6= current

ensures (holder = nil^holder

0

= current ^ i

0

= i � 1 ^ unchanged(q))_

(holder 6= nil^q

0

= q [fcurrentg ^ unchanged(holder ; i))

action Dequeue

when current = holder

ensures unchanged(holder ; q ; i)

procedure V ();

modi�es holder ; q ; i

requires holder = current

ensures (q 6= fg ^ holder

0

2 q ^ q

0

= q n fholder

0

g ^ unchanged(i))_

(q = fg ^ holder

0

= nil^i

0

= i + 1 ^ unchanged(q))

A procedure is either one atomic action or a composition of atomic actions. In the above, V is atomic

whereas P is a composition of the two atomic actions P :Queue and P :Dequeue . unchanged(w) is a

shorthand for w

0

= w .

KRML 41 / HPH 23 -2

Given the above speci�cation, we prove the following invariants:

J0 : nil 62 q

J1 : holder 6= nil_q = fg

J2 : holder 62 q

J3 : (holder = nil � i = 1) ^ (holder 6= nil � i = 0)

1.0 Proof of J0

J0 holds initially, and the only element added to q is current , which is not nil .

1.1 Proof of J1

Initially, q = fg , from which the proof obligation directly follows.

For P :Queue ,

J1 ^ P :Queue:Requires ^ P :Queue:Ensures

) f holder 6= nil _ holder = nil g

(holder 6= nil ^ holder

0

= holder) _ (holder = nil ^ q = fg ^ q

0

= q)

)

holder

0

6= nil _ q

0

= fg .

No variables are changed by P :Dequeue .

For V ,

J1 ^ V :Requires ^ V :Ensures

)

holder

0

2 q _ (q = fg ^ q

0

= q)

) f J0 g

holder

0

6= nil _ q

0

= fg .

1.2 Proof of J2

Initially, q = fg , from which the proof obligation directly follows.

For P :Queue ,

J2 ^ P :Queue:Requires ^ P :Queue:Ensures

) f J1 g

(holder = nil ^ q

0

= q ^ q = fg) _

(q

0

= q [fcurrentg ^ holder

0

62 q ^ holder

0

= holder ^ holder 6= current)

)

holder

0

62 q

0

.

No variables are changed by P :Dequeue .

For V ,

KRML 41 / HPH 23 -3

J2 ^ V :Requires ^ V :Ensures

)

q

0

= q n fholder

0

g _ holder

0

= nil

) f J0 : nil 62 q

0

g

holder

0

62 q

0

.

1.3 Proof of J3

Initially, holder = nil ^ i = 1 , from which the proof obligation directly follows.

For P :Queue ,

J3 ^ P :Queue:Requires ^ P :Queue:Ensures

)

(holder = nil ^ i = 1 ^ holder

0

= current ^ i

0

= i � 1) _

(holder 6= nil ^ i = 0 ^ holder

0

= holder ^ i

0

= i)

)

holder

0

6= nil ^ i

0

= 0

)

(holder

0

= nil � i

0

= 1) ^ (holder

0

6= nil � i

0

= 0) .

No variables are changed by P :Dequeue .

For V ,

J3 ^ V :Requires ^ V :Ensures

)

holder = current ^ holder 6= nil ^ i = 0 ^

((q 6= fg ^ holder

0

2 q ^ i

0

= i) _ (holder

0

= nil ^ i

0

= i + 1))

) f holder

0

6= nil _ holder

0

= nil g

(holder

0

6= nil ^ i

0

= 0) _ (holder

0

= nil ^ i

0

= 1)

)

(holder

0

= nil � i

0

= 1) ^ (holder

0

6= nil � i

0

= 0) .

2 Martin's axioms

In order to show that our Larch speci�cation satis�es Martin's axioms, we need to discuss s , s

0

, cV ,

cP , and qP . We claim s corresponds to i , and s

0

= 1 . Consequently, A0 follows directly from J3 .

The other values model how many times the di�erent atomic actions have been executed. Thus, every

completion of action P :Queue ought to result in an increment of qP , every completion of P :Dequeue

in a decrement of qP and an increment in cP , and every completion of V in an increment of cV .

We will refer to these rules as the intended meanings of qP , cP , and cV . Note that these values are

non-negative integers, and that the latter two are only increased.

We add variables

private var cV ; cP ; qP : integer

initially cV = 0 ^ cP = 0 ^ qP = 0 ;

KRML 41 / HPH 23 -4

which to correspond to cV , cP , and qP , respectively. In planting the updates of these variables, we

will consult the intended meanings as well as Martin's axioms. We will not change the behavior of the

previously introduced variables.

Guided by the axioms, we start by sinking our teeth into A1 . Variable i is modi�ed in the �rst

disjunct of P :Queue:Ensures and in the second disjunct of V :Ensures . To comply with A1 , we will

compensate for these modi�cations by adding an increase of cP to the former and an increase of cV to

the latter.

To maintain A2 , we need to consider increases of i (and, due to A0 , these are the only things to

worry about). As q is empty at the time i is increased in V :Ensures , we let qP correspond to the

size of q . Consequently, we add an increment of qP to the second disjunct of P :Queue:Ensures and a

decrement of qP to the �rst disjunct of V :Ensures . As A0 and A1 don't mention qP , they are still

maintained, and since qP is invariably the size of q , it is always non-negative.

Now that the axioms are satis�ed, we consider the intended meanings while maintaining the invariance

of the axioms. Variable cV is supposed to correspond to the number of completed V operations. This

propels us to add an increase of cV to the �rst disjunct of V :Ensures (recall that we already extended

the second disjunct with one). As we have given up additional modi�cations of i , a simultaneous increase

of cP is called for, in order to maintain A1 . We have now arrived upon the speci�cation

private var holder : T

q : set of T

i ; cV ; cP ; qP : integer

initially holder = nil^q = fg ^ i = 1 ^ cV = 0 ^ cP = 0 ^ qP = 0

procedure P();

modi�es holder ; q ; i ; cP ; qP

composition of Queue;Dequeue end

action Queue

requires holder 6= current

ensures (holder = nil^holder

0

= current ^ i

0

= i � 1^

cP

0

= cP + 1 ^ unchanged(q ; qP))_

(holder 6= nil^q

0

= q [fcurrentg^

qP

0

= qP + 1 ^ unchanged(holder ; i ; cP))

action Dequeue

when current = holder

ensures unchanged(holder ; q ; i ; cP ; qP)

procedure V ();

modi�es holder ; q ; i ; cV ; cP ; qP

requires holder = current

ensures (q 6= fg ^ holder

0

2 q ^ q

0

= q n fholder

0

g^

qP

0

= qP � 1 ^ cP

0

= cP + 1 ^ cV

0

= cV + 1 ^ unchanged(i))_

(q = fg ^ holder

0

= nil^i

0

= i + 1^

cV

0

= cV + 1 ^ unchanged(q ; qP ; cP)) :

KRML 41 / HPH 23 -5

So what about the intended meanings of qP and cP ? We see that the update

cP

0

= cP + 1

occurs in P :Queue:Ensures instead of in P :Dequeue:Ensures , and the updates

qP

0

= qP � 1 ^ cP

0

= cP + 1

appear in V :Ensures instead of in P :Dequeue:Ensures . The crux is that the axioms dictate that

sometimes a pair of P and V operations terminate at the same time.

So is our speci�cation still good? The answer will come from reexamining the \intended meanings".

We will take the stand that an operation completes when all remaining when clauses of its execution

are true and are stable, that is, they will remain true until the action has completed. An operation is

suspended if it has started but has not yet completed.

With this interpretation in mind, we need to show that current = holder holds as a result of the �rst

disjunct of P :Queue:Ensures , and that this condition is stable. We also need to show that the value of

holder resulting from the �rst disjunct of V :Ensures is stable.

The �rst disjunct of P :Queue:Ensures implies current = holder

0

, so current = holder will hold

after the action. There is only one process corresponding with this value of holder , so no other process

can satisfy the precondition of V . Moreover, any other process that embarks on a P operation will �nd

holder 6= nil , so it will not change the value of holder . We conclude our proof obligation holds for the

�rst disjunct of P :Queue:Ensures .

The �rst disjunct of V :Ensures mandates holder

0

2 q , so upon completion of V , holder will equal

some non-nil value, call it t . Processes other than t can then not meet the precondition of V , and

any process embarking on a P operation will �nd holder 6= nil , and thus end up not altering the value

of holder . This concludes our proof.

In conclusion, with a less strict interpretation of the rôle of the variables, we have shown that our

speci�cation satis�es the axioms.

3 Multiple semaphores

It is easy to extend our speci�cation to cater for multiple semaphores, because the speci�cation of each

semaphore shares no variables between the speci�cations of other semaphores.

private var holder : array Mutex of T

q : array Mutex of set of T

i : array Mutex of integer

initially h 8m :Mutex . holder [m] = nil^q [m] = fg ^ i [m] = 1 i

KRML 41 / HPH 23 -6

procedure P(m :Mutex);

modi�es holder [m]; q [m]; i [m]

composition of Queue;Dequeue end

action Queue

requires holder [m] 6= current

ensures (holder [m] = nil^holder

0

[m] = current ^ i

0

[m] = i [m]� 1^

unchanged(q [m]))_

(holder [m] 6= nil^q

0

[m] = q [m][fcurrentg^

unchanged(holder [m]; i [m]))

action Dequeue

when current = holder [m]

ensures unchanged(holder [m]; q [m]; i [m])

procedure V (m :Mutex);

modi�es holder [m]; q [m]; i [m]

requires holder [m] = current

ensures (q [m] 6= fg ^ holder

0

[m] 2 q [m] ^ q

0

[m] = q [m] n fholder

0

[m]g^

unchanged(i [m]))_

(q [m] = fg ^ holder

0

[m] = nil^i

0

[m] = i [m] + 1^

unchanged(q [m])) :

4 Conclusions

To write a semaphore speci�cation strong enough to satisfy Martin's axioms, we split the speci�cation

of P into two atomic actions. We provided an interpretation for cP and qP , and proved that the

speci�cation satis�es the axioms.

5 Acknowledgements

We are grateful for discussions with Greg Nelson during the fall of 1992.

References

[0] A.D. Birrell, J.V. Guttag, J.J. Horning, and R. Levin. Thread synchronization: A formal speci�ca-

tion. In Greg Nelson, editor, Systems Programming with Modula-3, Prentice Hall Series in Innovative

Technology, pages 119{129. Prentice Hall, 1991.

[1] E.W. Dijkstra. The structure of the 'THE'|multiprogramming system. Communications of the

ACM, 11(5):341{346, 1968.

[2] J.V. Guttag, J.J. Horning, and J.M. Wing. The Larch family of speci�cation languages. IEEE

Software, 2(5):24{36, September 1985.

KRML 41 / HPH 23 -7

[3] S. Haldar and D.K. Subramanian. A fair solution to the mutual exclusion problem using weak

semaphores. Operating Systems Review, 22(1):60{66, April 1988.

[4] S. Haldar, D.K. Subramanian, and D. Gries. One-bounded mutual exclusion using two blocked-set

binary semaphores and two shared bits. Private communications, 1991.

[5] H.P. Hofstee, K.R.M. Leino, and J.L.A. van de Snepscheut. Proof of a mutual exclusion algorithm by

Haldar and Subramanian. HPH 11, Internal note, California Institute of Technology, December 1991.

[6] A.J. Martin. An axiomatic de�nition of synchronization primitives. Acta Informatica, 16:219{235,

1981.

[7] A.J. Martin and J.R. Burch. Fair mutual exclusion with unfair P-operations and V-operations.

Information Processing Letters, 21(2):97{100, 1985.

