
KRML 45 -0Data Abstraction inMultiple ScopesK. Rustan M. Leino10 October 1994This notes provides a transcription of my end-of-summer intern talk at Digital's Systems ResearchCenter, 1994. The transcription provides somewords that I said, some words I think I said, andsome words I wish I had said.On suggestion from Allan Heydon, I have in-cluded PostScript renderings of my slides in thisnote. This instills a nice sing-along
avor.Omitted from this note is the nice introductionby Greg Nelson. � � �
Data Abstraction in
Multiple Scopes

K. Rustan M. Leino
Caltech

Host: Greg Nelson

20 September 1994 0Ladies and gentlemen, I'm Rustan Leino. I'm go-ing to tell you about data abstraction in multiplescopes. This is work I did as a summer intern hereat SRC, where I worked together with Greg Nel-son and others on the Extended Static Checkingproject.

KRML 45 -1
Extended Static Checking

Idea: Automatically verify, at compile-
time, that no execution of a program
causes a checked run-time error.

How: Allow programmers to annotate
their programs with specifications.

Challenges:
Automatic theorem proving
Verification condition generation
Specification problems 1The idea of extended static checking is to providea limited form of automatic program veri�cation.The goal is to prove the absence of checked run-time errors at compile-time, that is, statically. Thevision here is that compilers will, in the future, in-clude an extended static checker, just like compilersinclude type checkers today.Verifying a program automatically is, in general,not possible, because the halting problem can bereduced to that task. To tackle this, programmersprovide speci�cations of their programs. Having atool that encourages programmers to write downspeci�cations is a win by itself. Being able to provea program correct with respect to these speci�ca-tions is another leap for program technologies.The area of extended static checking presents uswith several challenges. One of these is automatictheorem proving. Here, issues include, Can we ver-ify the programs at all?, Can we verify e�ciently?,and possibly also, Can we verify them without in-tervention from the programmer?

Another challenge is generating the conditions tobe veri�ed. This involves translating speci�cationsand programs into formulas.The challenge that I focused on this summer isthat of writing speci�cations. This is an area thatI, before this summer, thought was solved. Thatturns out not to be the case.
Specification problems

Data hiding in interfaces/modules
requires data abstraction

Data abstraction
has been around Hoare72

has been used in the SRC Extended

Static Checker (ESC)

previously not sound in ESC !

Modular verification
Verify that an implementation meets its

specification, using only the information

from the implementation's scope 2Let me describe to you the setting in which we�nd speci�cation problems.The programming language we use, Modula-3,features modules and interfaces. A procedure isdeclared in an interface, and its implementation isgiven in a module. This hides the private data ofthe module from the clients of the interface. Theimplementation of a procedure declared in an inter-face may have an e�ect on the private data seen inthe module. We use data abstraction to combat thisproblem: the interface describes an abstract view ofthe behavior of the procedure; the module provides

KRML 45 -2the implementation and prescribes the relation be-tween the abstract view and the concrete one.Data abstraction, or more precisely, data re�ne-ment, has been around since [Hoare 1972], andmuch work has appeared in this area since. Dataabstraction has also been used in the SRC ExtendedStatic Checker. However, before this summer, thischecker was not sound in its treatment of data ab-straction.Extended static checking interests us in modularveri�cation. That means that one should be able toverify an implementation given only its module andits imported interfaces. Having the entire programin view at one time simpli�es veri�cation, but isunreasonable to require, because, for example, thena library could not be veri�ed until it were linkedwith a complete program.
Problem
Arises in presence of

data abstraction
friends interfaces
modular verification

My contributions
Invented solution to this problem
Constructed formal proof of soundness
Identified further problems 3The problem arises in the presence of threethings: data abstraction, friends interfaces |which

I will mention later|, and modular veri�cation.In the area of extended static checking, I madethree main contributions this summer. Firstly, I in-vented a solution to the above problem, a solutionI will describe in this talk. Secondly, for this so-lution, I constructed a formal proof of soundness,which I will not go through in this talk. I will,however, explain more precisely what the theorembeing proven is. Finally, I identi�ed some furtherproblems. While �nding solutions is di�cult, �nd-ing solutions to problems that you don't know howto state is even more di�cult. That's why havingidenti�ed these further problems is an indication ofprogress.In the rest of the talk, I will present a real prob-lem that was found when trying to verify the read-ers and writers library here at SRC. Once I've donethat, we can discuss the solution and the othersthings alluded to.
Procedure specifications

proc p() =
modifies frame
requires pre
ensures post

Why a modifies clause? 4

KRML 45 -3Since we are dealing with speci�cations, I needto show you their format. Using a Larch-like no-tation for procedure speci�cations [Larch], a pro-cedure p is speci�ed in three parts: a precondi-tion given by a REQUIRES clause, a postconditiongiven by an ENSURES clause, and a frame given bya MODIFIES clause. The frame speci�es what vari-ables the procedure is allowed to modify in order toestablish the postcondition from the precondition.Without MODIFIES clauses, a procedure would beable to modify anything, just as long as the post-condition is established. That would not give usspeci�cations that are strong enough.Next, I will present the basic problem to you. Inorder to do so, I need to show some code | fourslides thereof to be exact. Please bear with me as Igo through these.
unit Wr;
type T;
spec var target: T SEQ CHAR ;

proc PutChar (wr: T; ch: CHAR) =
modifies target wr
ensures target wr = target0 wr & ch

5Here's the �rst slide of code. It shows the in-terface of a writer class. A writer is an output

stream. Examples of writers are �le writers, whichwrite their output stream to a �le in a �le system,and text writers, which write their output to a textstring in memory.I said this was an interface, but the code readsUNIT . This is because what I'm doing need notdistinguish between interfaces and modules, as inModula-3. Instead, I will speak of either as a unit.Unit Wr introduces a new type, T . It also de-clares a speci�cation variable, target . Unlike aprogram variable, a speci�cation variable does notoccupy any space at run-time. Rather, its only pur-pose is to abstractly describe the behavior of someprocedures, eliminating the need to mention the de-tails of the particular implementation.Speci�cation variable target is of type T !SEQ[CHAR] . That is, target is a map from objectsof type T to sequences of characters. Those familiarwith Modula-3 may think of SEQ[CHAR] as Modula-3's TEXT type, but the exact nature of SEQ[CHAR]is not central to the discussion.It may seem funny that the type of target isa map. How does a programmer create a functionthat is assigned to this variable? Instead of think-ing of target as a map, you may think of it as aghost �eld of the object type T . When target isapplied to a particular object of type T , the resultis a sequence of characters. I will use the notationtarget[t] to denote this �eld for an object t . Amore common programming notation is t:target .Since the former notation is closer to the way these�elds are modeled in the theory, I will stick to it.Unit Wr also shows the speci�cation of a proce-dure, PutChar , which takes as parameters a writerand a character. The procedure modi�es the targetof the writer to ensure that the target, upon ter-mination of the procedure, equals the initial targetextended with the given character.

KRML 45 -4
unit WrFriends;
import Wr;
var buff: Wr.T SEQ CHAR ;

(* Wr.target wr =
flushed characters & buff wr *)

6Here's the second slide of code. It shows a unitWrFriends , which is an example of a friends inter-face, to which I alluded earlier. It gets that namefrom the fact that the unit is intended for import byother units with a close tie to the implementationof writers | a tie only \good friends" are thoughtto have. To those familiar with the SRC Modula-3library, WrFriends is the WrClass interface foundthere.Unit WrFriends imports unit Wr to make thedeclarations in Wr visible in WrFriends . The im-port relation is transitive | that is, by importingWr , WrFriends also imports all units imported byWr (if there were any).WrFriends declares a variable buff . Similarto target from the previous slide, buff can bethought of as a �eld of Wr:T objects. Note that wepre�x type T from unit Wr with \ Wr: " since it isimported from another unit. Note also that buffis not a speci�cation variable; hence, buff is a �eldthat will be present at run-time.

The unit ends with a comment describing to pro-grammers the intended usage of �eld buff . Theidea is the following. The target of each writer hasa
ushed portion and a bu�ered portion. Di�erentwriters store their
ushed portion in di�erent ways.For example, a �le writer keeps the
ushed portionon disk, whereas a text writer keeps it in a stringin memory.So that all di�erent kinds of writers can makeuse of the same bu�ering mechanism, buff is in-troduced. Hence, all writers have this buff �eld.Procedure PutChar , then, simply adds the givencharacter to the end of buff for the given writer,and calls the particular writer subclass to performa
ush when buff becomes too large.In a sense, the solution to be presented is a for-malization of this comment.
unit TextWr;
import Wr;
type T : Wr.T;
proc Init (wr: T) =

modifies Wr.target wr
ensures Wr.target wr = "";

proc Target (wr: T): SEQ CHAR =
ensures RES = Wr.target wr 7This code slide shows a particular class of writ-ers: text writers. The unit declares a type T as a

KRML 45 -5subtype of Wr:T . That is, objects of type TextWr:Tmake up some of the objects of type Wr:T .Unit TextWr also declares two procedures, Initand Target . Init clears the target of a textwriter. Its speci�cation states that the target ofthe given text writer is modi�ed to ensure that itequals the empty string upon termination.Procedure Target returns the target for a giventext writer. It does not modify anything in theprocess. RES refers to the result value returned bythe procedure.
unit TextWrImpl;
import Wr, WrFriends, TextWr;
var flushed: TextWr.T SEQ CHAR ;
rep Wr.target wr: TextWr.T is

Wr.target wr =
flushed wr & WrFriends.buff wr ;

impl Init (wr: TextWr.T) =
flushed wr := "";
WrFriends.buff wr := "";

impl Target (wr: TextWr.T) =
return flushed wr & WrFriends.buff wr8The fourth and �nal slide of code shows the im-plementation of text writers. In a language likeModula-3, this unit would be a module. However,since we do not distinguish between modules andinterfaces, we simply call this unit TextWrImpl .This unit imports all of the previous units thatwe've seen. It declares a variable flushed , whichwill contain the
ushed portion of text writers.

Hence, the representation of target for text writ-ers can be given, as stated by the REP clause. Moreprecisely, target of a text writer is the concatena-tion of flushed and buff for that writer.The notation used in the REP clause suggeststhat any relation can be used to describe the speci-�cation variable target . Although we don't thinkusing such an abstraction relation would cause un-manageable problems, all abstraction relations thatwe have ever used in practice have been functional.The SRC Extended Static Checker assumes theseto be functional, but our formal proof [KRML 42]does not.The TextWrImpl unit also gives the implementa-tion of procedures Init and Target . Init , whichis supposed to set target to the empty string, setsboth flushed and buff to the empty string forthat writer, the concatenation of which is the emptystring.Procedure Target , which is supposed to returntarget of the given text writer, simply returnsthe concatenation of flushed and buff for thatwriter.

KRML 45 -6
Question

Why can Init , which is specified
to only modify Wr.target ,
modify flushed and
WrFriends.buff ? 9Now that I've shown you the code for this pro-gramming example, I'm able to raise a question.Why is it that procedure Init , which was speci-�ed to only modify Wr:target , is allowed to modifyvariables flushed and WrFriends:buff?[Time for contemplation and interaction with au-dience.]That's it. We think it's okay for Init to modifythese variables because they are part of target 'srepresentation. Having decided that, we are readyto show the basic problem.

Basic Problem

unit FaultyClient;
import Wr, WrFriends, TextWr;

TextWr.Init (wr); Wr.target wr = ""
WrFriends.buff wr := ... ;
if TextWr.Target (wr) /= "" then Wrong end

What should prevent this
program from validating? 10Consider the following client unit, which importsWr , WrFriends , and TextWr | that is, all theunits seen so far except the text writer implemen-tation.For some text writer wr , it calls TextWr:Init .After that call, we can conclude that the target ofthis writer is the empty string, as is shown as anannotation on the slide. Although the representa-tion of target is not visible in this scope, you andI know that this means flushed and buff eachequals the empty string.The next statement mucks with this writer'sbuff �eld. Hence, this statement actually a�ectstarget . But this fact goes unnoticed to the ver-i�cation process, to which target 's REP clauseis not visible. Therefore, the veri�cation processtreats the update of buff as having no e�ect ontarget .The last line of code retrieves the value oftarget[wr] , via a call to Target , and comparesthis value to the empty string. If the update of

KRML 45 -7buff has no e�ect on target , then the two willbe equal, and the branch that \goes wrong" is nottaken.However, you and I, knowing the details of therepresentation of target know that this code willgo wrong at run-time. The question thus is, Whatshould prevent this program from validating?[Time for some deep pondering. Silence prevails.]
Solution

depends a on c

gives part of a rep of a (cf. partial
revelations in Modula-3)

modifies a means modifies a, c

rep a is ...

allowed to mention c

Pred (a) means Pred (a(c, ...)) 11Now that we understand what the problem is,let's move on to its solution.The solution is to introduce a new speci�cationconstruct called DEPENDS . This will allow depen-dencies between variables | that one variable ispart of the representation of another | to be re-vealed. The clauseDEPENDS a ON creveals that speci�cation variable a may be repre-sented in terms of variable c .

More precisely, the DEPENDS construct allows aprogrammer to give part of the representation ofa speci�cation variable. DEPENDS doesn't statewhat the representation is, but reveals a variableon which it depends.Modula-3 programmers familiar with partiallyopaque types may spot a similarity between partialand full type revelations, and DEPENDS and REPclauses.When a MODIFIES clause lists a speci�cationvariable, that is treated as a shorthand for also list-ing the variables on which the speci�cation variabledepends. In other words, the actual frame is there
exive transitive closure of the frame clause givenby the programmer. We often call this closure thedownward closure, to indicate that the closure goestowards the more concrete representation.We require that all variables on which a speci-�cation variable's representation depends be givenin DEPENDS clauses. Thus, in order to mention avariable c in the REP of a speci�cation variable a ,DEPENDS a ON cmust be visible in the scope in which the REP ap-pears.Finally, a predicate Pred that mentions a speci-�cation variable a is interpreted as the same pred-icate with a replaced by a function. The function,which in the slide I also call a , is a function of itsdependencies. Here, there is an important detail,coined residues, that plays a rôle, but I won't gointo that in this talk.Let's take a look at how DEPENDS solves the prob-lem I introduced earlier. To unit WrFriends , weaddDEPENDS Wr.target[t: Wr.T] ON buff[t] .This states that, for every writer t , target[t] de-pends on buff[t] .Similarly, in unit TextWrImpl , we add the lineDEPENDS Wr.target[t: TextWr.T] ONflushed[t] .

KRML 45 -8It discloses that, for every text writer t , target[t]depends on flushed[t] .Given these dependencies, the REP clause inTextWrImpl is allowed to be stated. Furthermore,the faulty client's update of buff is now re
ectedas a change of target | a change whose precisecharacter is here unknown. Hence, the faulty clientwill no longer verify.
Question

Under what restrictions can
depends be used?

Visibility Requirement
If a depends on c , then this
dependency must be visible
anywhere both a and c are.12Let us consider some restrictions that apply inthe use of DEPENDS clauses. Certainly, there mustbe some restriction, because otherwise all DEPENDSclauses could be written in some distant unit thatalmost never is imported, and then these clauseswould do no good given our goal of modular veri�-cation.To withstand this problem, we will require thatthe dependency between two variables be visiblewherever both of those two variables are. We callthis rule the visibility requirement.

import Wr, WrFriends;
spec var a;
depends a on WrFriends.buff;

 a = A Wr.PutChar (wr, ch) a = A ?

Authenticity Requirement
If a depends on c , then a
must be visible anywhere c is.13Let us consider another program unit. This onedeclares a speci�cation variable called a , and re-veals that a depends on buff . For simplicity, Ihave left subscripts o�.Now, consider the code that follows. Initially, it isknown that a takes some particular value, call it A .Then, Wr:PutChar is called. The MODIFIES clauseof PutChar only lists target . Since WrFriends isimported into the current scope, the dependency oftarget on buff is known. Hence, the downwardclosure of target is calculated to be target andbuff .From this, the veri�cation process concludes thatPutChar has some e�ect on target and buff ,but on no other variable. Consequently, a appearsunmodi�ed by the call to PutChar .You and I know that PutChar actually has somee�ect on buff , and therefore that a , which de-pends on buff , is potentially modi�ed. Hence, wewould not want this piece of code to validate.So, what went wrong? The veri�cation of this

KRML 45 -9unit assumes that PutChar has no e�ect on a .Thus, the implementation of PutChar must be en-sured to have no e�ect on a . But to guaranteethis, a must be in scope during the veri�cation ofPutChar . That leads us to our next requirement:If a speci�cation variable a depends on a variablec , then a must be visible everywhere c is.We call this rule the authenticity requirement, be-cause it prevents \unauthentic" abstract represen-tations of concrete variables. Stated in terms of theexample, it prevents the unauthentic abstract rep-resentation a of the concrete variable buff .
Visibility Requirement

If a depends on c , then this
dependency must be visible
anywhere both a and c are.

Authenticity Requirement
If a depends on c , then a
must be visible anywhere c is.

Convention
depends a on c goes in
the unit that declares c . 14Some of you may be wondering, How can the vis-ibility and authenticity requirements be enforced?The answer is simple: By following a simple con-vention, both of the requirements follow.The convention states that a DEPENDS clauseDEPENDS a ON cshould be placed in the unit that declares c .

Note �rst that this clause can only be writtendown in scopes in which both a and c are visi-ble; otherwise, the compiler will complain with anundefined identifier error message.The authenticity requirement dictates that theunit that declares a be imported from the unit thatdeclares c | otherwise it would be possible for aunit to import c 's unit to make c visible, but toleave a not visible. The visibility requirement isthen upheld by placing the DEPENDS clause in theunit that declares c .
Soundness of
Modular Verification

Theorem:
If each unit verifies,
then the whole program would,

provided program adheres to
visibility and authenticity requirements.15I have now shown a couple of restrictions on theuse of DEPENDS . Naturally, we wonder whetherthese two requirements are enough. To answer thatquestion, we're interested in proving the soundnessof modular veri�cation.Loosely speaking, this means that if each unitveri�es, then the whole program would verify, pro-vided the program satis�es the two stated require-

KRML 45 -10ments. Such a theorem allows the veri�cation of aprocedure implementation with respect to its spec-i�cation to be performed in the scope of the unit inwhich the implementation occurs, i.e., using onlythe information from that unit and its imports.I have a formal proof of this theorem, so it isindeed a theorem.A couple of remarks are in order. Firstly, al-though I won't show the formal proof here, an inter-esting property of the proof is that the visibility andauthenticity requirements appear in distinct places.For that reason alone, it is worthwhile stating therequirements separately, even though when teach-ing the rules to a programmer, just stating the con-vention is probably good enough.Secondly, since soundness holds, you may won-der about completeness. Completeness would meanthat if the program could be veri�ed given all itsunits at once, then each unit would verify by itself,too. We have no hope of achieving this. For ex-ample, in the faulty client example I showed, if theline that mucks with buff actually sets buff tothe empty string, then target remains unchanged.But the only way to determine that is to have theREP in scope, and requiring that violates the essenceof data hiding.So, it is not completeness in which we're inter-ested. Instead, we're interested in adequacy. Thatis, we want to be able to specify and verify thingswe care about. More about that later.

Status

Formal proof - KRML 42
Dave Detlefs has implemented
depends in the SRC Extended
Static Checker
Steve Glassman has used
depends to specify the
writers library 16The current status of DEPENDS is that its sound-ness in modular veri�cation has a formal proof,recorded in [KRML 42].Dave Detlefs has incorporated DEPENDS into theSRC Extended Static Checker.Steve Glassman has used DEPENDS in trying tospecify the writers library.

KRML 45 -11
Summary

depends is promising,
but visibility and authenticity
requirements are too strict.

Identified problems:
privatizable variables (see KRML 43)
pointwise dependencies
... 17In summary, DEPENDS is promising, but it's notthe end of the story. There are more problemsto solve, because the visibility and authenticity re-quirements are too strong for the solution to be ad-equate.The solution does appear adequate as long asthere is only one level of speci�cation variables, i.e.,so long as no speci�cation variable depends on an-other speci�cation variable. However, when onemodule is implemented in terms of another, thisis usually not good enough.For example, consider a lookup table interface,which, to hide the details of its implementation, de-clares a speci�cation variable contents . Lookuptables may then later be implemented using linkedlists, trees, hash tables, or anything else.If the implementation of some class of writersuses such lookup tables, then Wr:target for thosewriters will depend on contents . From the pre-sented requirements, the dependency of target oncontents needs to be declared in the lookup ta-

ble interface. But that seems totally unreasonable,since the lookup table implementor cannot antic-ipate all lookup table clients. We categorize thiskind of problem under what I have called privatiz-able variables, as seen in [KRML 43].In order to understand privatizable variables, wethink we �rst need to understand pointwise depen-dencies. These are dependencies of, say, target[wr]| that is, target for a particular writer wr | onbuff[wr] | that is, buff for that same writer. Theformal proof to which I alluded does not deal withpointwise dependencies. Rather, it only treats de-pendencies from all of target to all of buff . Webelieve it is but a clerical task to extend the proofto also handle pointwise dependencies, but I havenot yet done this.I will continue this work back at Caltech. Al-though there are more things we need to under-stand, the invention of DEPENDS and the identi�-cation of some outstanding problems provide hopeof achieving modular veri�cation of object-orientedprograms, and, for that matter, hope of achievingextended static checking.References[Hoare 1972] C.A.R. Hoare. Proof of correct-ness of data representations. Acta Informatica,1(4):271{81, 1972.[Larch] J.V. Guttag and J.J. Horning andJ.M. Wing. The Larch family of speci�cationlanguages. IEEE Software, 2(5):24-36, 1985.[KRML 42] K.R.M. Leino and G. Nelson. A for-mal proof of KRML 40. KRML 42, September1994.[KRML 43] K.R.M. Leino. Speci�cations andprivate data: A call for privatizable variables.KRML 43, September 1994.

