Data Abstraction in

Multiple Scopes

K. Rustan M. Leino
10 October 1994

This notes provides a transcription of my end-of-
summer intern talk at Digital’s Systems Research
Center, 1994. The transcription provides some
words that I said, some words I think I said, and
some words I wish I had said.

On suggestion from Allan Heydon, I have in-
cluded PostScript renderings of my slides in this
note. This instills a nice sing-along flavor.

Omitted from this note is the nice introduction
by Greg Nelson.

KRML 45 -0

Pata Abstraction in
Multiple Scopes

K. Rustan M. Leino
Caltech

Host: Greg Nelson
20 September 1994

Ladies and gentlemen, I’'m Rustan Leino. I'm go-
ing to tell you about data abstraction in multiple
scopes. This is work I did as a summer intern here
at SRC, where I worked together with Greg Nel-
son and others on the Extended Static Checking
project.

Extended Static Checking

ldea: Avtomatically verify, at compile-
time, that no execution of a program
causes a checked run-time error.

How: Allow programmers to annotate
their programs with specifications.

Challenges:
* Automatic theorem proving
« Verification condition generation
* Specification problems

The idea of extended static checking is to provide
a limited form of automatic program verification.
The goal is to prove the absence of checked run-
time errors at compile-time, that is, statically. The
vision here is that compilers will, in the future, in-
clude an extended static checker, just like compilers
include type checkers today.

Verifying a program automatically is, in general,
not possible, because the halting problem can be
reduced to that task. To tackle this, programmers
provide specifications of their programs. Having a
tool that encourages programmers to write down
specifications is a win by itself. Being able to prove
a program correct with respect to these specifica-
tions 1s another leap for program technologies.

The area of extended static checking presents us
with several challenges. One of these is automatic
theorem proving. Here, issues include, Can we ver-
ify the programs at all?, Can we verify efficiently?,
and possibly also, Can we verify them without in-
tervention from the programmer?

KRML 45 -1

Another challenge is generating the conditions to
be verified. This involves translating specifications
and programs into formulas.

The challenge that I focused on this summer is
that of writing specifications. This is an area that
I, before this summer, thought was solved. That
turns out not to be the case.

Specification problems

« Data hiding in interfaces/modules
requires data abstraction

 DPata abstraction
** has been around [Hoare72]
++ has been used in the SRC Extended
Static Checker (ESC)
-« previously not sound in ESC !

» Modular verification
Verify that an implementation wmeets its
specification, using only the information
from the implementation's scope

Let me describe to you the setting in which we
find specification problems.

The programming language we use, Modula-3,
features modules and interfaces. A procedure is
declared in an interface, and its implementation 1s
given in a module. This hides the private data of
the module from the clients of the interface. The
implementation of a procedure declared in an inter-
face may have an effect on the private data seen in
the module. We use data abstraction to combat this
problem: the interface describes an abstract view of
the behavior of the procedure; the module provides

the implementation and prescribes the relation be-
tween the abstract view and the concrete one.

Data abstraction, or more precisely, data refine-
ment, has been around since [Hoare 1972], and
much work has appeared in this area since. Data
abstraction has also been used in the SRC Extended
Static Checker. However, before this summer, this
checker was not sound in its treatment of data ab-
straction.

Extended static checking interests us in modular
vertfication. That means that one should be able to
verify an implementation given only its module and
its imported interfaces. Having the entire program
in view at one time simplifies verification, but is
unreasonable to require, because, for example, then
a library could not be verified until it were linked
with a complete program.

Problem

Arises in presence of

o data absiraction
o friends interfaces
o wodvlar verification

My contributions

o lnvented solution to this problem
o Constructed formal proof of soundness
o |dentified further problems

The problem arises in the presence of three
things: data abstraction, friends interfaces —which

KRML 45 -2

I will mention later—, and modular verification.

In the area of extended static checking, I made
three main contributions this summer. Firstly, I in-
vented a solution to the above problem, a solution
I will describe in this talk. Secondly, for this so-
lution, I constructed a formal proof of soundness,
which T will not go through in this talk. 1 will,
however, explain more precisely what the theorem
being proven is. Finally, I identified some further
problems. While finding solutions is difficult, find-
ing solutions to problems that you don’t know how
to state is even more difficult. That’s why having
identified these further problems is an indication of
progress.

In the rest of the talk, I will present a real prob-
lem that was found when trying to verify the read-
ers and writers library here at SRC. Once I've done
that, we can discuss the solution and the others
things alluded to.

Procedure specifications

proe pl) =
modifies frame

requires pre
ensures post

Why a wmodifies clause?

Since we are dealing with specifications, I need
to show you their format. Using a Larch-like no-
tation for procedure specifications [Larch], a pro-
cedure p is specified in three parts: a precondi-
tion given by a REQUIRES clause, a postcondition
given by an ENSURES clause, and a frame given by
a MODIFIES clause. The frame specifies what vari-
ables the procedure is allowed to modify in order to
establish the postcondition from the precondition.
Without MODIFIES clauses, a procedure would be
able to modify anything, just as long as the post-
condition is established. That would not give us
specifications that are strong enough.

Next, I will present the basic problem to you. In
order to do so, I need to show some code — four
slides thereof to be exact. Please bear with me as |
go through these.

unit Wr:

typeT:
spec var target: T — SEQLCHART;

proc PutChar (wr: T; ch: CHAR) =
wodifies target Lwr]
ensures target Lwr] = target, Cwrl & ch

Here’s the first slide of code. It shows the in-
terface of a writer class. A writer is an output

KRML 45 -3

stream. Examples of writers are file writers, which
write their output stream to a file in a file system,
and text writers, which write their output to a text
string in memory.

I said this was an interface, but the code reads
UNIT. This is because what I'm doing need not
distinguish between interfaces and modules, as in
Modula-3. Instead, I will speak of either as a unit.

Unit Wr introduces a new type, T. It also de-
clares a specification variable, target. Unlike a
program variable, a specification variable does not
occupy any space at run-time. Rather, its only pur-
pose is to abstractly describe the behavior of some
procedures, eliminating the need to mention the de-
tails of the particular implementation.

Specification variable target is of type T —
SEQ[CHAR]. That is, target is a map from objects
of type T tosequences of characters. Those familiar
with Modula-3 may think of SEQ[CHAR] as Modula-
3’s TEXT type, but the exact nature of SEQ[CHAR]
is not central to the discussion.

It may seem funny that the type of target is
a map. How does a programmer create a function
that is assigned to this variable? Instead of think-
ing of target as a map, you may think of it as a
ghost field of the object type T. When target is
applied to a particular object of type T, the result
is a sequence of characters. I will use the notation
target[t] to denote this field for an object t. A
more common programming notation is t.target.
Since the former notation is closer to the way these
fields are modeled in the theory, I will stick to it.

Unit Wr also shows the specification of a proce-
dure, PutChar, which takes as parameters a writer
and a character. The procedure modifies the target
of the writer to ensure that the target, upon ter-
mination of the procedure, equals the initial target
extended with the given character.

unit WrFriends;
import Wr;
var buff: Wr.T = SEQLCHART:

(* Wr.target Twr] =
flushed characters & buff twr] *)

Here’s the second slide of code. It shows a unit
WrFriends, which is an example of a friends inter-
face, to which T alluded earlier. It gets that name
from the fact that the unit is intended for import by
other units with a close tie to the implementation
of writers — a tie only “good friends” are thought
to have. To those familiar with the SRC Modula-3
library, WrFriends is the WrClass interface found
there.

Unit WrFriends @mports unit Wr to make the
declarations in Wr visible in WrFriends. The im-
port relation is transitive — that is, by importing
Wr, WrFriends also imports all units imported by
Wr (if there were any).

WrFriends declares a variable buff. Similar
to target from the previous slide, buff can be
thought of as a field of Wr.T objects. Note that we
prefix type T from unit Wr with “Wr.” since it is
imported from another unit. Note also that buff
is not a specification variable; hence, buff is a field
that will be present at run-time.

KRML 45 -4

The unit ends with a comment describing to pro-
grammers the intended usage of field buff. The
idea is the following. The target of each writer has
a flushed portion and a buffered portion. Different
writers store their flushed portion in different ways.
For example, a file writer keeps the flushed portion
on disk, whereas a text writer keeps it in a string
in memory.

So that all different kinds of writers can make
use of the same buffering mechanism, buff is in-
troduced. Hence, all writers have this buff field.
Procedure PutChar, then, simply adds the given
character to the end of buff for the given writer,
and calls the particular writer subclass to perform
a flush when buff becomes too large.

In a sense, the solution to be presented is a for-
malization of this comment.

unit TextWr;

import Wr;

type T<: Wr.T;

pro¢ Init (wr: T) =
wodifies Wr.target Cwr]

ensures Wr.target Lwrl = ™
proc Target (wr: T): SEQ LCHAR] =
ensures RES = Wr.target Lwr]

This code slide shows a particular class of writ-
ers: text writers. The unit declares a type T as a

subtype of Wr.T. That is, objects of type TextWr.T
make up some of the objects of type Wr.T.

Unit TextWr also declares two procedures, Init
and Target. Init clears the target of a text
writer. Its specification states that the target of
the given text writer is modified to ensure that it
equals the empty string upon termination.

Procedure Target returns the target for a given
text writer. It does not modify anything in the
process. RES refers to the result value returned by
the procedure.

unit TextWrimpl;
import Wr, WrFriends, TextWr;
var flushed: TextWr.T = SEQLCHARI;
rep Wr.target Lwr: TextWr.T is
Wr.target Lwrl =
flushed Cwr] & WrFriends.buff Twr1;

impl Init (wr: TextWr.T) =
flushed Cwr1 := "
WrkFriends.buff Cwr] := ™
impl Target (wr: TextWr.T) =
return flushed Cwr] & WrFriends.buff Twr1

The fourth and final slide of code shows the im-
plementation of text writers. In a language like
Modula-3, this unit would be a module. However,
since we do not distinguish between modules and
interfaces, we simply call this unit TextWrImpl.

This unit imports all of the previous units that
we’ve seen. It declares a variable flushed, which
will contain the flushed portion of text writers.

KRML 45 -5

Hence, the representation of target for text writ-
ers can be given, as stated by the REP clause. More
precisely, target of a text writer is the concatena-
tion of flushed and buff for that writer.

The notation used in the REP clause suggests
that any relation can be used to describe the speci-
fication variable target. Although we don’t think
using such an abstraction relation would cause un-
manageable problems; all abstraction relations that
we have ever used in practice have been functional.
The SRC Extended Static Checker assumes these
to be functional, but our formal proof [KRML 42]
does not.

The TextWrImpl unit also gives the implementa-
tion of procedures Init and Target. Init, which
is supposed to set target to the empty string, sets
both flushed and buff to the empty string for
that writer, the concatenation of which is the empty
string.

Procedure Target, which is supposed to return
target of the given text writer, simply returns
the concatenation of flushed and buff for that
writer.

KRML 45 -6

Question

Why can Init, which is specified
to only modify Wr.target,
wmodify flushed and
WrFriends.buff ?

Now that I've shown you the code for this pro-
gramming example, I'm able to raise a question.
Why is it that procedure Init, which was speci-
fied to only modify Wr.target, is allowed to modify
variables flushed and WrFriends.buff?

[Time for contemplation and interaction with au-
dience.]

That’s it. We think it’s okay for Init to modify
these variables because they are part of target’s
representation. Having decided that, we are ready
to show the basic problem.

Basic Proble

unit FaultyClient;
import Wr, WrFriends, TextWr;

TextWr.lnit (wr); {Wr.targetTwrl=""}
WrFriends.buff Twrl := ..;
if TextWr.Target (wr) #™ then Wrong end

What should prevent this
program from validating?

Consider the following client unit, which imports
Wr, WrFriends, and TextWr — that is, all the
units seen so far except the text writer implemen-
tation.

For some text writer wr, it calls TextWr.Init.
After that call, we can conclude that the target of
this writer is the empty string, as is shown as an
annotation on the slide. Although the representa-
tion of target is not visible in this scope, you and
I know that this means flushed and buff each
equals the empty string.

The next statement mucks with this writer’s
buff field. Hence, this statement actually affects
target. But this fact goes unnoticed to the ver-
ification process, to which target’s REP clause
is not visible. Therefore, the verification process
treats the update of buff as having no effect on
target .

The last line of code retrieves the value of
target[wr]|, via a call to Target, and compares
this value to the empty string. If the update of

buff has no effect on target, then the two will
be equal, and the branch that “goes wrong” is not
taken.

However, you and I, knowing the details of the
representation of target know that this code will
go wrong at run-time. The question thus is, What
should prevent this program from validating?

[Time for some deep pondering. Silence prevails.]

Solution
depends a on ¢

gives part of a rep of a (ef. partial
revelations in Modula-3)

wodifies 2 means wodifies a, ¢

e repais ..
allowed to mention ¢
Pred (a) weans Pred (ale, ..))

Now that we understand what the problem 1is,
let’s move on to its solution.

The solution is to introduce a new specification
construct called DEPENDS. This will allow depen-
dencies between variables — that one variable is
part of the representation of another — to be re-
vealed. The clause

DEPENDS a ON c

reveals that specification variable a may be repre-
sented in terms of variable c.

KRML 45 -7

More precisely, the DEPENDS construct allows a
programmer to give part of the representation of
a specification variable. DEPENDS doesn’t state
what the representation is, but reveals a variable
on which it depends.

Modula-3 programmers familiar with partially
opaque types may spot a similarity between partial
and full type revelations, and DEPENDS and REP
clauses.

When a MODIFIES clause lists a specification
variable, that is treated as a shorthand for also list-
ing the variables on which the specification variable
depends. In other words, the actual frame is the
reflexive transitive closure of the frame clause given
by the programmer. We often call this closure the
downward closure, to indicate that the closure goes
towards the more concrete representation.

We require that all variables on which a speci-
fication variable’s representation depends be given
in DEPENDS clauses. Thus, in order to mention a
variable ¢ in the REP of a specification variable a

DEPENDS a ON c

must be visible in the scope in which the REP ap-
pears.

Finally, a predicate Pred that mentions a speci-
fication variable a is interpreted as the same pred-
icate with a replaced by a function. The function,
which in the slide I also call a, 1s a function of its
dependencies. Here, there is an important detail,
coined residues, that plays a role, but I won’t go
into that in this talk.

Let’s take a look at how DEPENDS solves the prob-
lem I introduced earlier. To unit WrFriends, we

add
DEPENDS Wr.target[t: Wr.T] ON buff[t]

This states that, for every writer t, target[t] de-
pends on buff[t].
Similarly, in unit TextWrImpl, we add the line

DEPENDS Wr.target[t: TextWr.T] ON
flushed[t]

It discloses that, for every text wriler t, target|t]
depends on flushed[t].

Given these dependencies, the REP clause in
TextWrImpl is allowed to be stated. Furthermore,
the faulty client’s update of buff is now reflected
as a change of target — a change whose precise
character is here unknown. Hence, the faulty client
will no longer verify.

Question

Under what restrictions can
depends be used?

Visibility Requirement

If a depends on ¢, then this
dependency must be visible
anywhere both a and ¢ are.

Let us consider some restrictions that apply in
the use of DEPENDS clauses. Certainly, there must
be some restriction, because otherwise all DEPENDS
clauses could be written in some distant unit that
almost never is imported, and then these clauses
would do no good given our goal of modular verifi-
cation.

To withstand this problem, we will require that
the dependency between two variables be visible
wherever both of those two variables are. We call
this rule the wvisibility requirement.

KRML 45 -8

import Wr, WrFriends;

spec var a;
depends a on WrFriends.buff;

{a=A} Wr.PutChar (wr, ch) {a=A17}

Authenticity Requirement

If a dependson ¢, then a
wmust be visible anywhere ¢ is.

Let us consider another program unit. This one
declares a specification variable called a, and re-
veals that a depends on buff. For simplicity, I
have left subscripts off.

Now, consider the code that follows. Initially, it is
known that a takes some particular value, call it A .
Then, Wr.PutChar is called. The MODIFIES clause
of PutChar only lists target . Since WrFriends is
imported into the current scope, the dependency of
target on buff is known. Hence, the downward
closure of target is calculated to be target and
buff.

From this, the verification process concludes that
PutChar has some effect on target and buff,
but on no other variable. Consequently, a appears
unmodified by the call to PutChar.

You and I know that PutChar actually has some
effect on buff, and therefore that a, which de-
pends on buff, is potentially modified. Hence, we
would not want this piece of code to validate.

So, what went wrong? The verification of this

unit assumes that PutChar has no effect on a.
Thus, the implementation of PutChar must be en-
sured to have no effect on a. But to guarantee
this, a must be in scope during the verification of
PutChar. That leads us to our next requirement:
If a specification variable a depends on a variable
¢, then a must be visible everywhere ¢ 1s.

We call this rule the authenticity requirement, be-
cause it prevents “unauthentic” abstract represen-
tations of concrete variables. Stated in terms of the
example, it prevents the unauthentic abstract rep-
resentation a of the concrete variable buff .

Visibility Requirement

If a depends on ¢, then this
dependency wmust be visible
anywhere both a and ¢ are.

Authenticity Requirement

If a dependson c, then a
wmust be visible anywhere ¢ is.

Convention

depends a on ¢ goes in
the unit that declares ¢ .

Some of you may be wondering, How can the vis-
ibility and authenticity requirements be enforced?
The answer is simple: By following a simple con-
vention, both of the requirements follow.

The convention states that a DEPENDS clause

DEPENDS a ON c
should be placed in the unit that declares c.

KRML 45 -9

Note first that this clause can only be written
down in scopes in which both a and ¢ are visi-
ble; otherwise, the compiler will complain with an
undefined identifier error message.

The authenticity requirement dictates that the
unit that declares a be imported from the unit that
declares ¢ — otherwise it would be possible for a
unit to import ¢’s unit to make ¢ visible, but to
leave a mnot visible. The visibility requirement is
then upheld by placing the DEPENDS clause in the
unit that declares c.

Soundness of
Modular Verification

Theorew:

If each unit verifies,
then the whole program would,

provided program adheres to
visibility and avthenticity requirements.

I have now shown a couple of restrictions on the
use of DEPENDS. Naturally, we wonder whether
these two requirements are enough. To answer that
question, we’re interested in proving the soundness
of modular verification.

Loosely speaking, this means that if each unit
verifies, then the whole program would verify, pro-
vided the program satisfies the two stated require-

ments. Such a theorem allows the verification of a
procedure implementation with respect to its spec-
ification to be performed in the scope of the unit in
which the implementation occurs, i.e., using only
the information from that unit and its imports.

I have a formal proof of this theorem, so it is
indeed a theorem.

A couple of remarks are in order. Firstly, al-
though I won’t show the formal proof here, an inter-
esting property of the proofis that the visibility and
authenticity requirements appear in distinct places.
For that reason alone, it is worthwhile stating the
requirements separately, even though when teach-
ing the rules to a programmer, just stating the con-
vention is probably good enough.

Secondly, since soundness holds, you may won-
der about completeness. Completeness would mean
that if the program could be verified given all its
units at once, then each unit would verify by itself,
too. We have no hope of achieving this. For ex-
ample, in the faulty client example I showed, if the
line that mucks with buff actually sets buff to
the empty string, then target remains unchanged.
But the only way to determine that i1s to have the
REP in scope, and requiring that violates the essence
of data hiding.

So, it is not completeness in which we’re inter-
ested. Instead, we’re interested in adequacy. That
18, we want to be able to specify and verify things
we care about. More about that later.

KRML 45 -10

Status

- Formal proof — KRML 42

- Dave Detlefs has implemented
depends in the SRC Extended
Static Checker

. Steve Glassman has used

depends to specify the
writers library

The current status of DEPENDS is that its sound-
ness in modular verification has a formal proof,
recorded in [KRML 42].

Dave Detlefs has incorporated DEPENDS into the
SRC Extended Static Checker.

Steve Glassman has used DEPENDS in trying to
specify the writers library.

Summary

depends is prowising,
but visibility and authenticity
requirements are too strict.

Identified problems:

* privatizable variables (see KRML 43)
* pointwise dependencies

In summary, DEPENDS is promising, but it’s not
the end of the story. There are more problems
to solve, because the visibility and authenticity re-
quirements are too strong for the solution to be ad-
equate.

The solution does appear adequate as long as
there is only one level of specification variables, i.e.,
so long as no specification variable depends on an-
other specification variable. However, when one
module is 1mplemented in terms of another, this
is usually not good enough.

For example, consider a lookup table interface,
which, to hide the details of its implementation, de-
clares a specification variable contents. Lookup
tables may then later be implemented using linked
lists, trees, hash tables, or anything else.

If the implementation of some class of writers
uses such lookup tables, then Wr.target for those
writers will depend on contents. From the pre-
sented requirements, the dependency of target on
contents needs to be declared in the lookup ta-

KRML 45 -11

ble interface. But that seems totally unreasonable,
since the lookup table implementor cannot antic-
ipate all lookup table clients. We categorize this
kind of problem under what I have called privatiz-
able variables, as seen in [KRML 43].

In order to understand privatizable variables, we
think we first need to understand pointwise depen-
dencies. These are dependencies of, say, target|[wr]
— that is, target for a particular writer wr — on
buff[wr] — that is, buff for that same writer. The
formal proof to which I alluded does not deal with
pointwise dependencies. Rather, it only treats de-
pendencies from all of target to all of buff. We
believe it is but a clerical task to extend the proof
to also handle pointwise dependencies, but I have
not yet done this.

I will continue this work back at Caltech. Al-
though there are more things we need to under-
stand, the invention of DEPENDS and the identifi-
cation of some outstanding problems provide hope
of achieving modular verification of object-oriented
programs, and, for that matter, hope of achieving
extended static checking.

References

Proof of correct-

[Hoare 1972] C.A.R. Hoare.
ness of data representations. Acta Informatica,

1(4):271-81, 1972.

[Larch] J.V. Guttag and J.J. Horning and
J.M. Wing. The Larch family of specification
languages. IEEE Software, 2(5):24-36, 1985.

[KRML 42] K.R.M. Leino and G. Nelson. A for-
mal proof of KRML 40. KRML /2, September
1994.

[KRML 43] K.R.M. Leino. Specifications and
private data: A call for privatizable variables.

KRML 43, September 1994.

