KRML 51 -0

Pointwise dependenciesin data abstraction

K. Rustan M. Leino and Greg Nelson
20 April 1995

OV Digital’s Systems Research Center
SR{Q 130 Lytton Ave., Palo Alto, CA 94301, U.SA.

{rust an, gnel son}@a. dec. com

We extend the work in [0] to pointwise dependencies. We assume some familiarity with the issuesin Part 111
of [0], but outlinethe relevant ingredientsas a reminder.

0 A pointlessworld

In this section, we provide a quick refresher of the setting.
A program consists of aset of declarations, some of which declare variables. A scopeisasubset of aprogram,
inwhich thereisadeclaration for every identifier that is mentioned. If adeclarationisin scope, we say itisvisible.
Variables come in two flavors: abstract and concrete (also known as specification and program variables). An
abstract variable a isdeclared by

spec var a ,
and aprogram variable ¢ isdeclared by
var ¢

Both flavors of variables can appear in specifications, but only program variables are allowed in executable code
(like assignment statements).

Being abstract, a specification variable is given a representation in terms of (more) concrete variables. For
example,

rep aisa = c* 0)

states that abstract variable a isan abstract representation of ¢ . Theright-hand side (after the is) isapredicate
that describes how to eliminate « . Werestrict our attention to predicatesthat determine a uniquely fromthe other
variables.

In the presence of many scopes, the predicateina rep clause must mention only dependencies of the abstract
variable. A dependency of a on ¢ isdeclared by

depends a on ¢

The set of dependencies —the downward closure— of a variable is given by the reflexive and transitive relation
Resolve .

An abstract variable can be mentioned in predicates. Such predicates undergo functionalization before they
are interpreted. A variable a isfunctionalized into a function fxa whose parameters are the list of symbolsin
Resolve(a) . (Thesymbol * in fxa isjust part of the name of the function.) For example, given declarations

specvar a ; varc¢ ; dependsaonc ,

KRML 51 -1

any occurrence of a inapredicateis functionalized, written 7'(a) , into fxa(a,¢) .
Without awith a associated rep clause in scope, a function fxa istreated as an uninterpreted function.
Having a rep clause in scope provides an interpretation of the function. In particular, the declaration

rep ais P

givesriseto the axiom
(Vro F(P))

where r denotesthelist of variablesin Resolve(a) . For example, declaration (0) givesrise to the axiom
(Va,cv fxa(a,c)=c*)

Note that, despiteitssignature, fxa isnotafunctionof «. Thisisno accident; the « inthesignatureiscalled a
residue, and in the absence of avisible rep clause, residues are essentia for sound modular verification (details
arefoundin [Q]).

A procedure specification is given in the Larch-style

modifies w requires Pre ensures Post ,

where w , called theframe, isalist of variables, and Pre and Post , the pre- and postconditions, respectively, are
predicates. The specification statesthat, started in a state satisfying Pre , the procedure establishes Post , having
modified the values of only those variableslisted in w . When interpreting such a specification, w isresolved to
its downward closure, and then Pre and Post are functionalized.

In order to guarantee soundness of modular verification, therearetwo restrictionsonthe placement of depends
clauses.

Visibility requirement. If a dependson ¢, then thisdependency must be visibleanywhere both « and ¢ are.
Authenticity requirement. If o dependson ¢, then « isvisibleanywhere ¢ is.

Together, the requirements essentially boil down to that depends a on ¢ isdeclared “near” .
Given the above, Chapter 12 of [0] proves the soundness of modular verification.

1 Pointwise dependencies

We are now interested in one more attribute of variables: we allow them to be declared to be maps. To show that a
variableisamap, one declares it with an appended “ : map ”. (Note. Other than knowing that some variables are
maps, we are not concerned, at thistime, with the type of avariable))

Two operationsare defined on maps, select and store . A map can bethought of as an array (or asafunction).
Foramap «a,

select(a, t)

selectselement ¢ of a . Asamatter of convenience, we abbreviate thisexpression by «[t],inwhich“ ¢ " iscalled
the subscript. The value of

store(a, t, x)

KRML 51 -2

isthe same asthevalue of « , except that selecting element ¢ of the former yields « . Thus, we have the familiar
select(store(a, t,z),t) = =

We require that variables declared as maps are used only via select and store . Furthermore, we assume that
theonly use of store isin commands of the form

a := store(a, r,) ,
which is commonly abbreviated
alr] ==z

(thus dleviating the programmer from ever having to write “ store " directly). Since only program variables are
allowed in commands, store will never be applied to maps that are specification variables.

Maps invite programmers to writea rep clause describing the representation for amap at each point (in fact,
thisisthe only way we allow the representation of a map to be given). For example, given

specvar ¢ :map ; varc:map ; vard ,
we might write
rep aft]is a[t] = ¢[t]* + d

Here, “ rep aft]” specifiesthat « 's representation is given pointwise, and that ¢ isa dummy variable that can
be used in the representation predicate. As before, the predicate must mention only dependencies of the abstract
variable, but we now need to say what a dependency of amap is.

All dependencies of amap are given from a particular point, as if there were a separate downward closure for
each point of the map. A common form of such adependency is

depends a[t] on ¢[{]

As with pointwise rep clauses, the first occurrence of “ [¢]” declares a dummy that names the point and whose
scope iswhat succeeds “ on ”. Sometimes, that dummy is not used, asis

depends a[t] on d
These two depends clauses declare the downward closure of «[t] tobe {¢[t], d}, written
Resolve(a,t) = {c[t], d} ,
or with the alternative syntax
Resolve(a[t]) = {c[t],d}
Remember that ¢ isbut adummy; so, for example, Resolve(a[x]) means
{c[z], d}

Now we are ableto state the followingrule: The variables (and select s on map variables) that are allowed in
the predicate of rep a[t]is ... aretheeementsof Resolve(a[t]) .

KRML 51 -3

2 Pointwisefunctionalization

We now describe how F worksfor maps. We continue, throughout the rest of this note, to use the example

specvar ¢ :map ; varc:map ; vard ;
depends aft] on ¢[{],d ;
rep a[t]is a[t] = c[t]® + d

F' distributesover connectives. Thus,
Flz+y) = F(z)+ F(y)
More generdly, F distributesover functions, asin
Fladd(z,y)) = add(F(z), F(y))
We could apply the same ideato select on specification variables. That is,
F(select(a,t)) = select(F(a), F(t))

bl

alternatively written as
Falt]) = F(a)[F(1)]

However, thisdoes not seem attractive, because then F'(a) needsto denote amap whilethe rep clauseiswritten
pointwise. Moreover, consider acommand that modifies ¢[j], where j # ¢ . Doesthishave an effect on F'(a[t]),
i.e, on

fxa(a, e,)[F(t)] ?

Thisisnot clear, because it is not implied that the functionalized expression isafunction of ¢ only at element ¢ .
Instead, we specidize ' when itsargument isa select expression.

Falt]) = fra(a[F(1)], c[F(1)], d)

This closely resembles functionalization of non-map variables, where an abstract variable a is replaced by an
application of function fxa whose argumentsare Resolve(a) . Here, a[t] isreplaced by afunction fxa whose
arguments are given as Resolve(a[F (t)]) .

Note that this describes how to functionalize «[t] for any expression ¢, because ¢ is functionalized in the
result. Note, also, that it solves the problem with the above proposal, because here ¢ occurs only in the form
e[F(t)], which makes explicit of which point of ¢ the expression isafunction.

The axioms generated by rep clauses of maps need attention. Applying the non-map axiom-generating
process to maps yields

(Va[t], c[t], d > fxa(a[t],c[t],d) = c[t]* +d)

for our example. Thisiswhat we want, if only we interpret the list of dummies the “correctly”. The dummy a|¢]
isto be treated as one symbol, not two, and not as select applied to two arguments. Hence, we prefer to write
a[t] as axt , producing the axiom

(Vaxt,cxt,d > fxa(axt,cxt,d) = ext® 4+ d) . (1)

(Recall that + issimply another character that can be used inidentifiers. Thus, cxt? means (cxt)? , not cx(¢?),
which is but nonsense.)

KRML 51 -4

3 Modifiesclauses

We discuss how modifies clauses areinterpreted. In the absence of specification variables, we think of
modifies c[{] ensures @ ,

where ¢ denotesamap (and ¢ issomeexpression) and ¢ mentionsonly programvariables(andthus F(Q) = Q),
as syntactic sugar (see [Q]) for

modifies c ensures Q A(Vj | j# to > cplj] = ¢[j]) ,

where t, and ¢, denotetheinitia valuesof ¢ and ¢, respectively. Let'scall thissugar expansion A .
In Section O, we defined

modifies ¢ ensures @
to mean
modifies r ensures) ,

where r isthelist of elementsin Resolve(a). Let’s cal this expansion B . In the presence of specification
variables, the pre- and postconditionsare a so later functionalized into

modifies r ensures F'(Q)
Now we face a decision: How do we interpret the modifies clausein
modifies a[t] ensures @ 2

when « isa specification variable? Should we apply A first and then B (cal it AB), or should we apply B
firstandthen A (cal it BA)?
Naturally, we first investigate whether or not thereisadifference. Wedo BA first. Applying B to (2), we get

modifies a[t], ¢[t], d ensures
A subseguent application of A yields

modifies a, ¢, d
ensures Q A (Vy | j # to > aols]=alj]) A(Vy | J#to > cols] = cli])
Lastly, functionalizing the postcondition gives us
modifies a, ¢, d
ensures F'(Q)A
(Vi 3#t > fra(als], eols], do) = fxa(als], els], d))A
(Vi l g#tov cols]=cl])

Now for AB . Apply A to (2) and we get
modifies a ensures Q A (Y5 | j# tp > ap[j] = a[j])

How do we now apply B, since we have defined away to resolve select(a, t), but not just a ? We approximate
thisby ignoring subscripts. Applying B then gets us

modifies a, ¢, d
ensures Q A (Vi | j#ty > aplj] = alj]))

KRML 51 -5

which, after functionalization, turnsinto

modifies a, ¢, d

ensures F(Q)A(Vj | 7 # to v fxa(ap[i], coly], do) = fxa(aly], cly],d))

Thefirst thingto noticeisthat AB and BA do produce different results. The modifies clauses of both are
the same, but the ensures clauses differ. In particular, the ensures clause that results from BA is stronger
than the oneresulting from A B . The extra conjunctis

Vil g#to> coli]l=cl])

Although this extra conjunct will usually hold —and, in fact, it may even be difficult to mechanically prove
the ensures clause without first proving that conjunct—, we argue that we should not add this conjuct to the
ensures clause.

Where this makes a differenceiswhere ¢ isvisible but the rep clause for a isnot —aswould be the case,
for example, if ¢ werefound in afriendsinterface (see [0]) and we're considering the scope of a friend—. Then,
any callsto aprocedurethat modifies a[j], for some j, can potentially dter thevalueof ¢[k],forany &, notjust
k = j . However, any such modification must preserve thevalueof «[k],thatis, of fxa(a[k], c[k], d) .

4 Modular verificiation

We have not yet redone the soundness proof of modular verification found in Chapter 12 of [0]. However, an quick
inspection of the proof gives us hope that the proof will go through without substantial changes. A conclusive test
isin theworks...

For the proof, we need to adjust the visibility and authenticity requirements to accommodate for pointwise
dependencies. We propose to subject pointwise depends clauses to follow the same rules as before, ignoring
any subscripts. Thus, for example, the clause

depends a[t] on ¢[{]

should be placed near the declaration of ¢ .

If our guess that the soundness proof will go through with only minor changes turns out to be correct, we will
not be surprised, for another reason: What we have discussed in this note has been focused more on how things
are proven in any one scope, as opposed to the differences in proofs due to limited scope. Let's be a little more
specific.

Thestructureof the soundnessproof, as pointed outin[0], issuch that it “extends’ acorrectness proof conducted
in a restricted scope to a correctness proof in the complete (“flat”) scope. The soundness proof tells us nothing re
the net worth of what isbeing proven. This note deals with what seems to be sensible interpretations of pointwise
dependencies, predicates involving such, and modifies clauses listing such.

Stated dightly differently, we expect that whatever we would have chosen in the choices that we made in
Sections 2 and 3, has no impact on the proof—we think these are choices that concern the net worth of what is
proven and not the soundness of modular verification.

We expect addressing depends clauses of the form

depends a[t] on ¢[b[t]]

to give us more troubl e (see bel ow).

KRML 51 -6

5 Work tobedone

We have yet to do the actual formal proof.

Our next step will be to accommodate object-orientedness. We can do this by letting the dummy ¢ be part of
arepresentation predicate. More specifically, we'reinterested in letting ¢ be a pivot of a*“case split”. Additional
syntax can be of help here. We can alow rep clauses and corresponding depends clausesthat have theform

rep a[t] where Q(t)is P ,

where @ isapredicaeon ¢, and P isapredicate whose symbolsare drawn from Resolve(a[t]) (thisdoes not
include ¢ itself). For each symbol « , the different @ ’s must be mutually exclusive (except depends clauses,
where implication everywhere is also okay). Furthermore, there needs to be a way to statically determine, as if
from the syntax or static types of the language, which ¢ 'sholdfor agiven ¢, soastoget Resolve todo theright
thing. Having this extension lets us substitute istype(t, T') for Q(t), where T issome subtype of the index
typeof a.

The big step after that isto explore the extra requirements needed to make

depends a[t] on ¢[b[t]]

sound. From its syntax alone, we can tell what we need to alter the visibility and authenticity requirements, since
those requirements currently mention only two variables, « and ¢, and this declaration mentionsthree, o, b,
and c.

References

[0] K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of Technology, 1995.
Available as Technical Report Caltech-CS-TR-95-03.

