
KRML 51 -0

Pointwise dependencies in data abstraction

K. Rustan M. Leino and Greg Nelson
20 April 1995

Digital’s Systems Research Center
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.frustan,gnelsong@pa.dec.com

We extend the work in [0] to pointwise dependencies. We assume some familiarity with the issues in Part III
of [0], but outline the relevant ingredients as a reminder.

0 A pointless world

In this section, we provide a quick refresher of the setting.
A program consists of a set of declarations, some of which declare variables. A scope is a subset of a program,

in which there is a declaration for every identifier that is mentioned. If a declaration is in scope, we say it is visible.
Variables come in two flavors: abstract and concrete (also known as specification and program variables). An

abstract variable a is declared byspec var a ;
and a program variable c is declared byvar c :
Both flavors of variables can appear in specifications, but only program variables are allowed in executable code
(like assignment statements).

Being abstract, a specification variable is given a representation in terms of (more) concrete variables. For
example,rep a is a = c2 (0)

states that abstract variable a is an abstract representation of c2 . The right-hand side (after the is ) is a predicate
that describes how to eliminate a . We restrict our attention to predicates that determine a uniquely from the other
variables.

In the presence of many scopes, the predicate in a rep clause must mention only dependencies of the abstract
variable. A dependency of a on c is declared bydepends a on c :
The set of dependencies —the downward closure— of a variable is given by the reflexive and transitive relationResolve .

An abstract variable can be mentioned in predicates. Such predicates undergo functionalization before they
are interpreted. A variable a is functionalized into a function f ?a whose parameters are the list of symbols inResolve(a) . (The symbol ? in f ?a is just part of the name of the function.) For example, given declarationsspec var a ; var c ; depends a on c ;



KRML 51 -1

any occurrence of a in a predicate is functionalized, written F (a) , into f ?a(a; c) .
Without a with a associated rep clause in scope, a function f ?a is treated as an uninterpreted function.

Having a rep clause in scope provides an interpretation of the function. In particular, the declarationrep a is P
gives rise to the axiomh 8 r . F (P) i ;
where r denotes the list of variables in Resolve(a) . For example, declaration (0) gives rise to the axiomh 8 a; c . f ?a(a; c) = c2 i :
Note that, despite its signature, f ?a is not a function of a . This is no accident; the a in the signature is called a
residue, and in the absence of a visible rep clause, residues are essential for sound modular verification (details
are found in [0]).

A procedure specification is given in the Larch-stylemodi�esw requiresPre ensuresPost ;
where w , called the frame, is a list of variables, and Pre and Post , the pre- and postconditions, respectively, are
predicates. The specification states that, started in a state satisfying Pre , the procedure establishes Post , having
modified the values of only those variables listed in w . When interpreting such a specification, w is resolved to
its downward closure, and then Pre and Post are functionalized.

In order to guarantee soundness of modular verification, there are two restrictions on the placement of depends
clauses.

Visibility requirement. If a depends on c , then this dependency must be visible anywhere both a and c are.

Authenticity requirement. If a depends on c , then a is visible anywhere c is.

Together, the requirements essentially boil down to that depends a on c is declared “near” c .
Given the above, Chapter 12 of [0] proves the soundness of modular verification.

1 Pointwise dependencies

We are now interested in one more attribute of variables: we allow them to be declared to be maps. To show that a
variable is a map, one declares it with an appended “ : map ”. (Note. Other than knowing that some variables are
maps, we are not concerned, at this time, with the type of a variable.)

Two operations are defined on maps, select and store . A map can be thought of as an array (or as a function).
For a map a ,select(a; t)
selects element t of a . As a matter of convenience, we abbreviate this expression by a[t ] , in which “ t ” is called
the subscript. The value ofstore(a; t ; x )



KRML 51 -2

is the same as the value of a , except that selecting element t of the former yields x . Thus, we have the familiarselect(store(a; t ; x ); t) = x :
We require that variables declared as maps are used only via select and store . Furthermore, we assume that

the only use of store is in commands of the forma := store(a; r ; x ) ;
which is commonly abbreviateda[r ] := x
(thus alleviating the programmer from ever having to write “ store ” directly). Since only program variables are
allowed in commands, store will never be applied to maps that are specification variables.

Maps invite programmers to write a rep clause describing the representation for a map at each point (in fact,
this is the only way we allow the representation of a map to be given). For example, givenspec var a : map ; var c : map ; var d ;
we might writerep a[t ] is a[t ] = c[t ]2 + d :
Here, “ rep a[t ] ” specifies that a ’s representation is given pointwise, and that t is a dummy variable that can
be used in the representation predicate. As before, the predicate must mention only dependencies of the abstract
variable, but we now need to say what a dependency of a map is.

All dependencies of a map are given from a particular point, as if there were a separate downward closure for
each point of the map. A common form of such a dependency isdepends a[t ] on c[t ] :
As with pointwise rep clauses, the first occurrence of “ [t ] ” declares a dummy that names the point and whose
scope is what succeeds “ on ”. Sometimes, that dummy is not used, as isdepends a[t ] on d :
These two depends clauses declare the downward closure of a[t ] to be fc[t ]; dg , writtenResolve(a; t) = fc[t ]; dg ;
or with the alternative syntaxResolve(a[t ]) = fc[t ]; dg :
Remember that t is but a dummy; so, for example, Resolve(a[x ]) meansfc[x ]; dg :

Now we are able to state the following rule: The variables (and select ’s on map variables) that are allowed in
the predicate of rep a[t ] is : : : are the elements of Resolve(a[t ]) .



KRML 51 -3

2 Pointwise functionalization

We now describe how F works for maps. We continue, throughout the rest of this note, to use the examplespec var a : map ; var c : map ; var d ;depends a[t ] on c[t ]; d ;rep a[t ] is a[t ] = c[t ]2 + d :F distributes over connectives. Thus,F (x + y) = F (x ) + F (y) :
More generally, F distributes over functions, as inF (add(x ; y)) = add(F (x );F (y)) :
We could apply the same idea to select on specification variables. That is,F (select(a; t)) = select(F (a);F (t)) ;
alternatively written asF (a[t ]) = F (a)[F (t)] :
However, this does not seem attractive, because then F (a) needs to denote a map while the rep clause is written
pointwise. Moreover, consider a command that modifies c[j ] , where j 6= t . Does this have an effect on F (a[t ]) ,
i.e., onf ?a(a; c; d)[F (t)] ?
This is not clear, because it is not implied that the functionalized expression is a function of c only at element t .

Instead, we specialize F when its argument is a select expression.F (a[t ]) = f ?a(a[F (t)]; c[F (t)]; d)
This closely resembles functionalization of non-map variables, where an abstract variable a is replaced by an
application of function f ?a whose arguments are Resolve(a) . Here, a[t ] is replaced by a function f ?a whose
arguments are given as Resolve(a[F (t)]) .

Note that this describes how to functionalize a[t ] for any expression t , because t is functionalized in the
result. Note, also, that it solves the problem with the above proposal, because here c occurs only in the formc[F (t)] , which makes explicit of which point of c the expression is a function.

The axioms generated by rep clauses of maps need attention. Applying the non-map axiom-generating
process to maps yieldsh 8 a[t ]; c[t ]; d . f ?a(a[t ]; c[t ]; d) = c[t ]2 + d i
for our example. This is what we want, if only we interpret the list of dummies the “correctly”. The dummy a[t ]
is to be treated as one symbol, not two, and not as select applied to two arguments. Hence, we prefer to writea[t ] as a?t , producing the axiomh 8 a?t ; c?t ; d . f ?a(a?t ; c?t ; d) = c?t2 + d i : (1)

(Recall that ? is simply another character that can be used in identifiers. Thus, c?t2 means (c?t)2 , not c?(t2 ) ,
which is but nonsense.)



KRML 51 -4

3 Modifies clauses

We discuss how modi�es clauses are interpreted. In the absence of specification variables, we think ofmodi�es c[t ] ensuresQ ;
where c denotes a map (and t is some expression) and Q mentions only program variables (and thus F (Q) = Q ),
as syntactic sugar (see [0]) formodi�es c ensuresQ ^ h 8 j >>> j 6= t0 . c0 [j ] = c[j ] i ;
where t0 and c0 denote the initial values of t and c , respectively. Let’s call this sugar expansion A .

In Section 0, we definedmodi�es a ensuresQ
to meanmodi�es r ensuresQ ;
where r is the list of elements in Resolve(a) . Let’s call this expansion B . In the presence of specification
variables, the pre- and postconditions are also later functionalized intomodi�es r ensures F (Q) :

Now we face a decision: How do we interpret the modi�es clause inmodi�es a[t ] ensuresQ (2)

when a is a specification variable? Should we apply A first and then B (call it AB ), or should we apply B
first and then A (call it BA )?

Naturally, we first investigate whether or not there is a difference. We do BA first. Applying B to (2), we getmodi�es a[t ]; c[t ]; d ensuresQ :
A subsequent application of A yieldsmodi�es a; c; densuresQ ^ h 8 j >>> j 6= t0 . a0 [j ] = a[j ] i ^ h 8 j >>> j 6= t0 . c0 [j ] = c[j ] i :
Lastly, functionalizing the postcondition gives usmodi�es a; c; densuresF (Q)^h 8 j >>> j 6= t0 . f ?a(a0 [j ]; c0[j ]; d0) = f ?a(a[j ]; c[j ]; d) i^h 8 j >>> j 6= t0 . c0 [j ] = c[j ] i :

Now for AB . Apply A to (2) and we getmodi�es a ensuresQ ^ h 8 j >>> j 6= t0 . a0 [j ] = a[j ] i :
How do we now apply B , since we have defined a way to resolve select(a; t) , but not just a ? We approximate
this by ignoring subscripts. Applying B then gets usmodi�es a; c; densuresQ ^ h 8 j >>> j 6= t0 . a0 [j ] = a[j ] i ;



KRML 51 -5

which, after functionalization, turns intomodi�es a; c; densuresF (Q) ^ h 8 j >>> j 6= t0 . f ?a(a0 [j ]; c0[j ]; d0) = f ?a(a[j ]; c[j ]; d) i :
The first thing to notice is that AB and BA do produce different results. The modi�es clauses of both are

the same, but the ensures clauses differ. In particular, the ensures clause that results from BA is stronger
than the one resulting from AB . The extra conjunct ish 8 j >>> j 6= t0 . c0 [j ] = c[j ] i :

Although this extra conjunct will usually hold —and, in fact, it may even be difficult to mechanically prove
the ensures clause without first proving that conjunct—, we argue that we should not add this conjuct to theensures clause.

Where this makes a difference is where c is visible but the rep clause for a is not —as would be the case,
for example, if c were found in a friends interface (see [0]) and we’re considering the scope of a friend—. Then,
any calls to a procedure that modifies a[j ] , for some j , can potentially alter the value of c[k ] , for any k , not justk = j . However, any such modification must preserve the value of a[k ] , that is, of f ?a(a[k ]; c[k ]; d) .

4 Modular verificiation

We have not yet redone the soundness proof of modular verification found in Chapter 12 of [0]. However, an quick
inspection of the proof gives us hope that the proof will go through without substantial changes. A conclusive test
is in the works...

For the proof, we need to adjust the visibility and authenticity requirements to accommodate for pointwise
dependencies. We propose to subject pointwise depends clauses to follow the same rules as before, ignoring
any subscripts. Thus, for example, the clausedepends a[t ] on c[t ]
should be placed near the declaration of c .

If our guess that the soundness proof will go through with only minor changes turns out to be correct, we will
not be surprised, for another reason: What we have discussed in this note has been focused more on how things
are proven in any one scope, as opposed to the differences in proofs due to limited scope. Let’s be a little more
specific.

The structure of the soundness proof, as pointed out in [0], is such that it “extends” a correctness proof conducted
in a restricted scope to a correctness proof in the complete (“flat”) scope. The soundness proof tells us nothing re
the net worth of what is being proven. This note deals with what seems to be sensible interpretations of pointwise
dependencies, predicates involving such, and modi�es clauses listing such.

Stated slightly differently, we expect that whatever we would have chosen in the choices that we made in
Sections 2 and 3, has no impact on the proof—we think these are choices that concern the net worth of what is
proven and not the soundness of modular verification.

We expect addressing depends clauses of the formdepends a[t ] on c[b[t ]]
to give us more trouble (see below).



KRML 51 -6

5 Work to be done

We have yet to do the actual formal proof.
Our next step will be to accommodate object-orientedness. We can do this by letting the dummy t be part of

a representation predicate. More specifically, we’re interested in letting t be a pivot of a “case split”. Additional
syntax can be of help here. We can allow rep clauses and corresponding depends clauses that have the formrep a[t ]where Q(t) is P ;
where Q is a predicate on t , and P is a predicate whose symbols are drawn from Resolve(a[t ]) (this does not
include t itself). For each symbol a , the different Q ’s must be mutually exclusive (except depends clauses,
where implication everywhere is also okay). Furthermore, there needs to be a way to statically determine, as if
from the syntax or static types of the language, which Q ’s hold for a given t , so as to get Resolve to do the right
thing. Having this extension lets us substitute istype(t ;T ) for Q(t) , where T is some subtype of the index
type of a .

The big step after that is to explore the extra requirements needed to makedepends a[t ] on c[b[t ]]
sound. From its syntax alone, we can tell what we need to alter the visibility and authenticity requirements, since
those requirements currently mention only two variables, a and c , and this declaration mentions three, a , b ,
and c .

References

[0] K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of Technology, 1995.
Available as Technical Report Caltech-CS-TR-95-03.


