
KRML 55 -0

Modeling subtypes with only one object type

K. Rustan M. Leino
1 August 1995

Digital’s Systems Research Center
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.
rustan@pa.dec.com

The semantics of object types can be rather bewildering. In contrast, a language with only
simple types like int and bool is quite manageable. In this note, we consider an object-
oriented language with simple types, including a simple object type obj . We then extend this
language with sugar that models different types, subtyping, and also the narrow construct.

0 A simple language

Types

We consider a language where values can have types like int and bool , called simple types.
The language provides a special simple type called obj . Values of this type are called objects.
There is only one object constant, viz., nil ; other objects are created by new , described below.

Statements

Our language consists of usual imperative programming constructs like assignment, sequential
composition, and block statements.

Fields

Fields of objects are declared as global map variables. A map variable has type S ! T for
some S and T . The type S ! T , being composed of other types, is not a simple type. For
example, the declarationvar f :obj ! S ;
where S is a simple type, declares a field f . Every field is declared as a map from obj .

KRML 55 -1

A field can be dereferenced at an object o , written f [o] (in many languages written o:f).
One can use this dereference in two statements:x := f [o] and f [o] := x :
The first of these sets x to the value of f at o , and the latter stores x in f at o . According
to its type, a field can be dereferenced by any object. However, we make a restriction that nil
may not be used. That is, a precondition of both statements above is o 6= nil .

Methods

A method m is declared (and given a specification) with a declaration likemethod r :R := t :m(a:A)requires Premodi�es frameensures Post ;
where r of simple type R is a list of formal out-parameters of m , t (implicitly of type obj)
denotes the formal “self” object (the object on which the method is invoked), a of simple
type A is the list of formal in-parameters, predicate Pre is the precondition of the method,frame is a list of variables that are allowed to be modified by the method, and predicate Post
specifies the postcondition of the method. In this note, we won’t dwell more on the exact
meaning of the specification; we assume the reader to have a feel for the meaning of “pre-” and
“postconditions”. We assume each method to have exactly one specification.

An invocation of a method m is writtenv := o:m(x) ;
where v is a list of actual out-parameters, o is the actual “self” object, and x is a list of actual
in-parameters. Like field dereferences, methods can be invoked only on non-nil objects. To
capture that fact, we treat the aforementioned specification of m as sugar forrequires Pre ^ t 6= nil modi�es frame ensures Post :
Allocating new objects

New objects can be allocated using new . The programming system provides a special map
variable alloc .var alloc:obj ! bool

KRML 55 -2

User programs cannot modify alloc directly; only invocations of new alter the value of alloc .
The specification of new is in terms of alloc .x :obj := new()requires truemodi�es allocensures x 6= nil ^ :alloc0[x] ^ alloc[x] ^ h8 y >>> y 6= x . alloc0[y]) alloc[y] i

Subscripting of a map with 0 indicates the initial value of that map.

1 Modeling multiple object types

User defined types

We now add to our language a notion of user defined object types. Such a type T is declared
by type T <: S ;
where S is a (possibly user defined) object type. The subtype relation (also written <:) is
the ordering defined as the reflexive, transitive closure of the <: given in declarations of user
defined types.

Type maps

For each object type T , the programming system provides a special map variable $T .var $T :obj! bool
These variables are set appropriately (by the programming system) at the beginning of each
execution of a program. They cannot subsequently be changed. The programming system
guarantees the following about the values of type map variables.h 8T0 ;T1 ; o>>> T1 <: T0 . $T1 [o]) $T0 [o] i

KRML 55 -3

Allocating new objects

We now allow new to take the name of a type as an in-parameter. The specification of such
invocations of new differ from the previous specification only in the last conjunct of the
postcondition.x :obj := new(T)requires truemodi�es allocensures x 6= nil ^ :alloc0[x] ^ alloc[x] ^ h8 y >>> y 6= x . alloc0[y]) alloc[y] i^ $T [x]
Fields

We now allow field declarations to be annotated with “ :: T ” for some object type T , as invar f :obj ! S :: T ;
where, as before, S is a simple type. Recall, the evaluation of a field dereference f [o] previously
required o 6= nil . For f annotated with type T , we now also require $T [o] .

Methods

As for field declarations, we allow annotations of method declarations.method r :R := t :m(a:A) :: Trequires Premodi�es frameensures Post
We take this specification to be sugar forrequires Pre ^ t 6= nil ^ $T [t] modi�es frame ensures Post :
Narrowing values

In the presence of map types, we can now define the operation narrow . We do so by giving
its specification, where T denotes the name of an object type.x :obj := narrow(y:obj;T)requires $T [y]modi�esensures x = y

KRML 55 -4

Note that narrow modifies nothing, and thus has no effect on the program state (other than
on its out-parameter x , of course).

2 A comparison with Modula-3

We remark on a few differences between the object types presented here and those in Modula-
3 [1].

Firstly, Modula-3 allows only single inheritance. We didn’t need any such restriction for our
object types.

Secondly, Modula-3 defines a notion of assignable. An object type T is assignable to an
object type S exactly when S <: T or T <: S . Let S and T denote object types for which
neither S <: T nor T <: S is known. Then, for f a field of T and o an expression of typeS , f [o] fails to type check.

In what we have presented, the same restriction applies, but the error is not caught by the
type checker, which insists only that o be of type obj , but instead by the verifier, which will
fail to prove that $T [o] holds.

Finally, Modula-3 gives a stronger specification of x := new(T) . Where in our postcon-
dition we wrote the conjunct$T [x] ;
Modula-3 says (in our notation)h 8T 0 . $T 0[x] � T <: T 0 i :
As an example, consider the declarationtype T1 <: T0
and the program snippetvar x :obj;beginx := new(T0);if $T1 [x] then wrong else skip �end :
In Modula-3, this program is guaranteed to terminate, whereas one cannot prove the same for
our programs.

KRML 55 -5

3 Open arrays

We conclude by showing how open arrays are modeled.

Collections

Each open array type has an associated collection (terminology adapted from Euclid [0]). A
collection is a map variable of the formvar array:obj! nat! S ;
where S is a simple type. The statements involving array arex := array[o][i] and array[o][i] := x :
(In Modula-3, array[o][i] is written o"[i] or simply o[i] , because the Modula-3 type system
determines array uniquely from the type of o .) The first of these statements sets x to the
value of element i of array[o] ; the second sets element i of array[o] to x . Index i must be
a proper index into array[o] , as described below.

Allocating new open arrays

For each collection array , the programming system declares an associated map number$array .var number$array:obj! nat
As for type maps, the maps associated with collections are set appropriately (by the programming
system) at the beginning of each execution of a program, and are never changed thereafter.

We now introduce a new flavor of new , tailored for use with open arrays. For array a
collection, we specify the new new asx :obj := new(array; n:nat)requires truemodi�es allocensures x 6= nil ^ :alloc0[x] ^ alloc[x] ^ h8 y >>> y 6= x . alloc0[y]) alloc[y] i^ number$array[x] = n

KRML 55 -6

Proper indices

Finally, we describe precisely what a “proper index” means. From the type system, we already
have that the i inarray[o][i]
must be a natural number. Furthermore, in order for i to be a proper index, we require a
precondition ofi < number$array[o] :
References

[0] B.W. Lampson, J.J. Horning, R.L. London, J.G. Mitchell, and G.J. Popek. Report on the
programming language Euclid. Technical Report CSL-81-12, Xerox PARC, 3333 Coyote
Hill Rd., Palo Alto, CA 94304, U.S.A., October 1981. An earlier version of this report
appeared in ACM SIGPLAN Notices, 12(2), February 1977.

[1] G. Nelson, editor. Systems Programming with Modula-3. Series in Innovative Technology.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

