KRML 63-0

A myth in the modular specification of programs

K. Rustan M. Leino
7 November 1995

ST, Digital’s Systems Research Center
SR@ 130 Lytton Ave., Palo Alto, CA 94301, U.SA.

rust an@a. dec. com

When writing specifications of modular programs, two crucial elements are abstraction and
modifies clauses. Without abstraction, information hiding is not possible; without modifies
clauses, a specification must mention the variables that go unchanged explicitly, and doing
so is prohibited because most of the variables are not in scope. Reasoning about modular
specifications involves the difficult area of interpreting modifies clauses in the presence of
abstraction. Such interpretation should be sound, meaning that program properties that are
provable hold in every execution of the program.

Focusing on a commonly-thought-of-as-correct implementation of a given specification, |
challenge the existence of a sound and reasonable methodology for proving such implementa-
tions correct, suggesting the legality of such implementationsto be but a myth.

O Introduction

In thissection, | set the stage by presenting an example. The exampleisinspired by [3] and will
lead us to the myth.

0.0 A set abstraction
Let Data be some type, and consider the following declarations, written in the style of [1].

type Set
spec var valid: Set — IB
spec var value: Set — set of Data

This declares atype Set and two abstract fields (or, “specification variables’) of Set objects.
Field valid representsthe validity of a Set object, i.e., some condition on the concrete repre-
sentation of a Set object. Validity is established by someinitialization method, and is required
as a precondition by all other operations on Set objects. Field value represents the abstract

KRML 63 -1

value of Set objects. Since value isdeclared asan abstract field, each implementation of Set
objects decides on a concrete representation of value .

Here are the declarations of some of Set 's methods. (The “self” parameter is shown as the
first parameter to these methods.)

method add(s: Set ; d: Data)
requires valid|s]
modifies value[s]
ensures valuey,s[s] = value,.[s] U {d}

method remove(s: Set ; d: Data)
requires valid|s]
modifies value[s]
ensures valuey,s[s] = valuey.[s] ~ {d}

method n: IN := size(s: Set)
requires valid|s]
ensures n = |value[s]|
method b: B := member(s: Set ; d: Data)
requires valid|s]
ensures b = d € value|s]

0.1 A default implementation of member

Consider now a default implementation of method member . Thisimplementation is givenin
terms of the other methods and is therefore not tied to any particular implementation of Set .
The ideaisto attempt to remove the given element from the set to see if that affects the size of
the set. If it does affect the size, the element was a member of the set, so it isinserted back into
the set.

method impl b: B := member(s: Set ; d: Data)
var oldSize in
call oldSize := size(s) ;
call remove(s, d) ;
if oldSize = size(s)
then b := false
else call add(s, d) ; b := true
fi

end

KRML 63 -2

The quintessence of the proof of that this piece of code establishes its ensures clause,
b = d € value[s],is

|value[s] ~ {d}| = |value[s]| = d & value[s]
for the then caseand
d € value[s] U {d}

for the else case, both of which can be proven from the properties of sets. However, thisaone
does not establish the correctness of the proposed member implementation—one must also
prove that the implementation meetsits modifies clause.

The specification of member has an empty modifies clause, yet the implementation
contains invocations of remove and add , which may modify value[s]. The abstract value of
value[s] is restored, however, to its initial value before the method returns, as can be proven
from the properties of sets.

0.2 Themyth

From the above, one might conclude that the given implementation of member iscorrect. This
isamyth. Asalluded to above, the implementation does restore the abstract value of value|s]
to itsinitial value. But what about benevolent side effects?—The concrete representation of
value[s] may change as aresult of invoking remove and add! Thisis where the particular
interpretation of modifies clauses playsarole. Let me discuss a couple of possibilities.

1 Possibleinterpretation: Downward closure

In thissection, | take the “downward closure’ interpretation of modifies clauses (see[1]). To
keep things simple, | won’'t worry about new allocations or the fancier kinds of representation
dependencies described in [2] or [Q]. Informally, the “downward closure” interpretation of

modifies m ,

where m is a list of possibly abstract designator expressions, is that m and its concrete
representation are allowed to be modified, but nothing else.

In the member example, this means that add and remove are allowed to modify the
abstract value and concrete representation of value[s|, but nothing else. For member , it means
that no variable is allowed to change values from entry to exit of the method.

KRML 63 -3

Thus, with this interpretation, member should not verify—its implementation can shake
up the abstract value and concrete representation of wvalue[s], but only the abstract value of
value[s], not the state of its concrete representation, can be proven to be restored.

To give an account of that thisis areal worry, consider the following example. A possible
implementation of Set keepstwo fields, « and r, which keep track of the number of timesan
element has been added to the set and removed from the set, respectively. Initialy,

value[s]| = {} AN al[s] =0 A r[s]=10

Method add(s, d) increments a[s] when d isnot in valuey.[s], remove(s,d) increments
r[s] when d isin valuey,.[s], and size(s) smply returns a[s] — r[s] .

If member(s,d) isinvoked when d € value[s], the effect will be to increment both a|s]
and r[s] by 1. However, thisinterpretation of modifies clauses allows one to prove a Hoare
triplelike

{valid[s] A a[s] = 7 A d € value[s]} call b := member(s,d) {al[s]=7} , (0)

where b denotes alocal variable, because the invocation of member , according to its specifi-
cation, has no side effect on any program variable. A common reaction to this argument is to
say that fields ¢ and r are private to the implementation of Set and should not be accessible
to generd clients. Note, however, that the invocation of member given in (0) may be found
in the body of one of the other Set methods, in which case the fields can be accessed and the
problem does arise.

We concludethat no sound modular programming methodol ogy can both havethisinterpreta-
tionof modifies clausesand consider thisimplementation of member tomeetitsspecification.
(I assume, for the purposes of this note, that every programming methodology works essentially
like Hoarelogic, modulo thetrandation of modifies clausesinto postcondition contributions.)

2 Possibleinterpretation: Concretevariablesare
promiscuous

A different interpretation of modifies clauses is to augment the “downward closure” inter-
pretation to always allow concrete variables to be changed. That is, a modifies clause tells
only which abstract variables are and are not alowed to be changed; concrete variables are
considered promiscuous and are implicitly allowed to modified by any method. The ideaisthat
thiswould correct the problem by making it impossible to prove Hoare tripleslike (0).

| show that this interpretation suffers from the same problem as the interpretation above.
Let Natural beatypewith an abstract field n: IN and methods increment and getvalue with

KRML 63 -4

the expected specifications. Let thefields ¢ and r in the previous section have type Natural
instead of IV, and let value[s] depend on nla[s]] and n[r[s]] (such dependencies are called
“dynamic” in[2]).

Because value[s| dependsontheabstract valuesof n[a[s]] and n[r[s]], methods add(s, d)
and remove(s, d) are alowed to change the abstract values of nla[s]] and n[r[s]]. Yet, with
thisinterpretation of modifies clauses, aHoaretriplelike

{valid[s] A d € value[s]}

call z := getvalue(a[s]) ;

call b := member(s, d) ; D
call y := getvalue(a[s])
{z =9y} ,

where z, b,y denote loca variables, would verify. We conclude that no sound modular pro-
gramming methodol ogy can both have thisinterpretation of modifies clausesand consider the
given implementation of member to meet its specification.

One might imagine possible changes to this interpretation that would get around problems
with being able to prove Hoare tripleslike (1). For example, one might say that, in addition to
that concrete variables are always allowed to be changed, the state of these concrete variables
(eg., n[F] where n isapossibly abstract field and £ is some concrete expression like a[s])
is allowed to be changed. Stated differently, we saw a problem with treating only concrete
variables as promiscuous, so perhaps promiscuity should extend beyond concrete variables.
Next, | show that any interpretation in which concrete variables are promiscuous rules out a
common and useful programming paradigm.

Consider atype T that hastwofields, z and y, and amethod ¢ranspose , which swapsthe
z and y valuesof the object on whichit isapplied. The specification of transpose lookslike

method transpose(t: T')
modifies z[t], y[¢]
ENsures Tpos:[t] = Ypre[t] A Ypost[t] = Tpre|t]

Let U beasubtypeof T that hasan additional concrete field, say afixed-size matrix «, and
amethod m . According to its specification, m ensures some conditiononthe a, z,and y
fields. Let's say that the most straightforward implementation of m first computes a new value
of «,andthen, if thedeterminant, say, of thenew a iszero, swaps z and y . It would beniceif
this implementation could invoke method ¢ranspose for the swapping of z and y, especidly
if z and y were complex data structures. But, sSince « isconcrete, the invocation of transpose
may have severe effects on the value of «, in which case m ’s computation of « would have
been al in vain.

KRML 63-5

In this example, it is not possible for the specification of transpose, which appears in
type T, to mention anything about field « explicitly, because « isnot in scope there. Note,
however, that it is possible that an implementation of transpose really does change the value
of a because transpose may beimplemented in some subtype of U . Therefore, the proposed
programming methodology leaves only two outs: (i) compute the new value of « into alocal
array placed on the stack, then deliberate an invocation of ¢ranspose , and finally copy thelocal
array into a, or (ii) compute « in dtu, and then inline the swap of z and y without invoking
method trenspose. Neither alternative seems attractive. In summary, considering concrete
variables to be promiscuous in the interpretation of modifies clauses|eadsto a programming
methodology with undesirable restrictions on useful and common programming paradigms.

3 Conclusions

So isthe quest for a sound programming methodol ogy forever doomed? Not at al. Lacking at
present any alternative, reasonable, sound interpretation of modifies clauses with which the
given implementation of member verifies, we conclude ssimply that the given implementation
of member ought to be considered illegal.

It would be unfair to end this note here without demonstrating a methodology that indeed
detects the given implementation of member to be bad and without showing a specification of
member in that methodology that does permit the given implementation. Fortunately, | know
of just such a methodology, viz. the onein [1, 2, 0]. That methodology uses the “downward
closure’ interpretation of modifies clauses, and introduces in the generation of verification
conditions so-called residues. The residue of an abstract variable stands for those variables
on which the abstract variable depends but that are not in scope. An attempt at verifying the
given implementation of member resultsin not being able to show that the residue of value|[s]
returns to itsinitial value. If one wants to permit the given implementation of member to be
valid, one must reflect that fact in the specification of member asfollows.

method b: B := member(s: Set ; d: Data)
requires valid|s]
modifies value[s]
ensures b = d € valuey,s[s] N valuepos[s] = valuepye|s]

This specification explicitly gives member theright to modify the representation of valuels],
as long as such modification does not have any net effect on the abstract value of value[s] .

To recap, to specify modular programs one needs both abstraction and modifies clauses.
By giving apreciseinterpretation of modifies clauses, liketheinterpretationintroducedin[1],
one finds out marvelous facts about programming methodology. This note revealed a myth in

KRML 63 -6

the modular specification of programs and pointed out, once more, the importance of having a
precise interpretation of modifies clauses.

4 Acknowledgements

| am grateful to Raymie Stata, Greg Nelson, and Dave Detlefsfor discussions about this problem.

References

[O] D.L. Detlefs and K.R.M. Leino. Computing dependencies. KRML 61, Digital’s Systems
Research Center, March 1996.

[1] K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of
Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[2] K.R.IM. Leino and G. Nelson. Beyond stacks. KRML 54, Digita’s Systems Research
Center, July 1995.

[3] R.Stataand J.V. Guttag. Modular reasoning in the presence of subclassing. ACM SGPLAN
Notices, 30(10):200-214, October 1995. OOPSLA ' 95 conference proceedings.

