
KRML 63 -0

A myth in the modular specification of programs

K. Rustan M. Leino
7 November 1995

Digital’s Systems Research Center
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.
rustan@pa.dec.com

When writing specifications of modular programs, two crucial elements are abstraction andmodi�es clauses. Without abstraction, information hiding is not possible; without modi�es
clauses, a specification must mention the variables that go unchanged explicitly, and doing
so is prohibited because most of the variables are not in scope. Reasoning about modular
specifications involves the difficult area of interpreting modi�es clauses in the presence of
abstraction. Such interpretation should be sound, meaning that program properties that are
provable hold in every execution of the program.

Focusing on a commonly-thought-of-as-correct implementation of a given specification, I
challenge the existence of a sound and reasonable methodology for proving such implementa-
tions correct, suggesting the legality of such implementations to be but a myth.

0 Introduction

In this section, I set the stage by presenting an example. The example is inspired by [3] and will
lead us to the myth.

0.0 A set abstraction

Let Data be some type, and consider the following declarations, written in the style of [1].type Setspec var valid :Set ! IBspec var value:Set ! set of Data
This declares a type Set and two abstract fields (or, “specification variables”) of Set objects.
Field valid represents the validity of a Set object, i.e., some condition on the concrete repre-
sentation of a Set object. Validity is established by some initialization method, and is required
as a precondition by all other operations on Set objects. Field value represents the abstract

KRML 63 -1

value of Set objects. Since value is declared as an abstract field, each implementation of Set
objects decides on a concrete representation of value .

Here are the declarations of some of Set ’s methods. (The “self” parameter is shown as the
first parameter to these methods.)method add(s:Set ; d :Data)requires valid [s]modi�es value[s]ensures valuepost [s] = valuepre [s] [fdgmethod remove(s:Set ; d :Data)requires valid [s]modi�es value[s]ensures valuepost [s] = valuepre [s] fdgmethod n: IN := size(s:Set)requires valid [s]ensures n = jvalue[s]jmethod b: IB := member(s:Set ; d :Data)requires valid [s]ensures b � d 2 value[s]
0.1 A default implementation of member
Consider now a default implementation of method member . This implementation is given in
terms of the other methods and is therefore not tied to any particular implementation of Set .
The idea is to attempt to remove the given element from the set to see if that affects the size of
the set. If it does affect the size, the element was a member of the set, so it is inserted back into
the set.method impl b: IB := member(s:Set ; d :Data)var oldSize incall oldSize := size(s) ;call remove(s; d) ;if oldSize = size(s)then b := falseelse call add(s; d) ; b := true�end

KRML 63 -2

The quintessence of the proof of that this piece of code establishes its ensures clause,b � d 2 value[s] , isjvalue[s] fdgj = jvalue[s]j) d 62 value[s]
for the then case andd 2 value[s] [fdg
for the else case, both of which can be proven from the properties of sets. However, this alone
does not establish the correctness of the proposed member implementation—one must also
prove that the implementation meets its modi�es clause.

The specification of member has an empty modi�es clause, yet the implementation
contains invocations of remove and add , which may modify value[s] . The abstract value ofvalue[s] is restored, however, to its initial value before the method returns, as can be proven
from the properties of sets.

0.2 The myth

From the above, one might conclude that the given implementation of member is correct. This
is a myth. As alluded to above, the implementation does restore the abstract value of value[s]
to its initial value. But what about benevolent side effects?—The concrete representation ofvalue[s] may change as a result of invoking remove and add ! This is where the particular
interpretation of modi�es clauses plays a rôle. Let me discuss a couple of possibilities.

1 Possible interpretation: Downward closure

In this section, I take the “downward closure” interpretation of modi�es clauses (see [1]). To
keep things simple, I won’t worry about new allocations or the fancier kinds of representation
dependencies described in [2] or [0]. Informally, the “downward closure” interpretation ofmodi�es m ;
where m is a list of possibly abstract designator expressions, is that m and its concrete
representation are allowed to be modified, but nothing else.

In the member example, this means that add and remove are allowed to modify the
abstract value and concrete representation of value[s] , but nothing else. For member , it means
that no variable is allowed to change values from entry to exit of the method.

KRML 63 -3

Thus, with this interpretation, member should not verify—its implementation can shake
up the abstract value and concrete representation of value[s] , but only the abstract value ofvalue[s] , not the state of its concrete representation, can be proven to be restored.

To give an account of that this is a real worry, consider the following example. A possible
implementation of Set keeps two fields, a and r , which keep track of the number of times an
element has been added to the set and removed from the set, respectively. Initially,value[s] = fg ^ a[s] = 0 ^ r [s] = 0 :
Method add(s; d) increments a[s] when d is not in valuepre [s] , remove(s; d) incrementsr [s] when d is in valuepre [s] , and size(s) simply returns a[s]� r [s] .

If member(s; d) is invoked when d 2 value[s] , the effect will be to increment both a[s]
and r [s] by 1. However, this interpretation of modi�es clauses allows one to prove a Hoare
triple likefvalid [s] ^ a[s] = 7 ^ d 2 value[s]g call b := member(s; d) fa[s] = 7g ; (0)

where b denotes a local variable, because the invocation of member , according to its specifi-
cation, has no side effect on any program variable. A common reaction to this argument is to
say that fields a and r are private to the implementation of Set and should not be accessible
to general clients. Note, however, that the invocation of member given in (0) may be found
in the body of one of the other Set methods, in which case the fields can be accessed and the
problem does arise.

We conclude that no sound modular programming methodology can both have this interpreta-
tion of modi�es clauses and consider this implementation of member to meet its specification.
(I assume, for the purposes of this note, that every programming methodology works essentially
like Hoare logic, modulo the translation of modi�es clauses into postcondition contributions.)

2 Possible interpretation: Concrete variables are
promiscuous

A different interpretation of modi�es clauses is to augment the “downward closure” inter-
pretation to always allow concrete variables to be changed. That is, a modi�es clause tells
only which abstract variables are and are not allowed to be changed; concrete variables are
considered promiscuous and are implicitly allowed to modified by any method. The idea is that
this would correct the problem by making it impossible to prove Hoare triples like (0).

I show that this interpretation suffers from the same problem as the interpretation above.
Let Natural be a type with an abstract field n: IN and methods increment and getvalue with

KRML 63 -4

the expected specifications. Let the fields a and r in the previous section have type Natural
instead of IN , and let value[s] depend on n[a[s]] and n[r [s]] (such dependencies are called
“dynamic” in [2]).

Because value[s] depends on the abstract values of n[a[s]] and n[r [s]] , methods add(s; d)
and remove(s; d) are allowed to change the abstract values of n[a[s]] and n[r [s]] . Yet, with
this interpretation of modi�es clauses, a Hoare triple likefvalid [s] ^ d 2 value[s]gcall x := getvalue(a[s]) ;call b := member(s; d) ;call y := getvalue(a[s])fx = yg ; (1)

where x ; b; y denote local variables, would verify. We conclude that no sound modular pro-
gramming methodology can both have this interpretation of modi�es clauses and consider the
given implementation of member to meet its specification.

One might imagine possible changes to this interpretation that would get around problems
with being able to prove Hoare triples like (1). For example, one might say that, in addition to
that concrete variables are always allowed to be changed, the state of these concrete variables
(e.g., n[E] where n is a possibly abstract field and E is some concrete expression like a[s])
is allowed to be changed. Stated differently, we saw a problem with treating only concrete
variables as promiscuous, so perhaps promiscuity should extend beyond concrete variables.
Next, I show that any interpretation in which concrete variables are promiscuous rules out a
common and useful programming paradigm.

Consider a type T that has two fields, x and y , and a method transpose , which swaps thex and y values of the object on which it is applied. The specification of transpose looks likemethod transpose(t :T)modi�es x [t]; y[t]ensures xpost [t] = ypre [t] ^ ypost [t] = xpre [t] :
Let U be a subtype of T that has an additional concrete field, say a fixed-size matrix a , and
a method m . According to its specification, m ensures some condition on the a , x , and y
fields. Let’s say that the most straightforward implementation of m first computes a new value
of a , and then, if the determinant, say, of the new a is zero, swaps x and y . It would be nice if
this implementation could invoke method transpose for the swapping of x and y , especially
if x and y were complex data structures. But, since a is concrete, the invocation of transpose
may have severe effects on the value of a , in which case m ’s computation of a would have
been all in vain.

KRML 63 -5

In this example, it is not possible for the specification of transpose , which appears in
type T , to mention anything about field a explicitly, because a is not in scope there. Note,
however, that it is possible that an implementation of transpose really does change the value
of a because transpose may be implemented in some subtype of U . Therefore, the proposed
programming methodology leaves only two outs: (i) compute the new value of a into a local
array placed on the stack, then deliberate an invocation of transpose , and finally copy the local
array into a , or (ii) compute a in situ, and then inline the swap of x and y without invoking
method transpose . Neither alternative seems attractive. In summary, considering concrete
variables to be promiscuous in the interpretation of modi�es clauses leads to a programming
methodology with undesirable restrictions on useful and common programming paradigms.

3 Conclusions

So is the quest for a sound programming methodology forever doomed? Not at all. Lacking at
present any alternative, reasonable, sound interpretation of modi�es clauses with which the
given implementation of member verifies, we conclude simply that the given implementation
of member ought to be considered illegal.

It would be unfair to end this note here without demonstrating a methodology that indeed
detects the given implementation of member to be bad and without showing a specification ofmember in that methodology that does permit the given implementation. Fortunately, I know
of just such a methodology, viz. the one in [1, 2, 0]. That methodology uses the “downward
closure” interpretation of modi�es clauses, and introduces in the generation of verification
conditions so-called residues. The residue of an abstract variable stands for those variables
on which the abstract variable depends but that are not in scope. An attempt at verifying the
given implementation of member results in not being able to show that the residue of value[s]
returns to its initial value. If one wants to permit the given implementation of member to be
valid, one must reflect that fact in the specification of member as follows.method b: IB := member(s:Set ; d :Data)requires valid [s]modi�es value[s]ensures b � d 2 valuepost [s] ^ valuepost [s] = valuepre [s]
This specification explicitly gives member the right to modify the representation of value[s] ,
as long as such modification does not have any net effect on the abstract value of value[s] .

To recap, to specify modular programs one needs both abstraction and modi�es clauses.
By giving a precise interpretation of modi�es clauses, like the interpretation introduced in [1],
one finds out marvelous facts about programming methodology. This note revealed a myth in

KRML 63 -6

the modular specification of programs and pointed out, once more, the importance of having a
precise interpretation of modi�es clauses.

4 Acknowledgements

I am grateful to Raymie Stata, Greg Nelson, and Dave Detlefs for discussions about this problem.

References

[0] D.L. Detlefs and K.R.M. Leino. Computing dependencies. KRML 61, Digital’s Systems
Research Center, March 1996.

[1] K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of
Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[2] K.R.M. Leino and G. Nelson. Beyond stacks. KRML 54, Digital’s Systems Research
Center, July 1995.

[3] R. Stata and J.V. Guttag. Modular reasoning in the presence of subclassing. ACM SIGPLAN
Notices, 30(10):200–214, October 1995. OOPSLA ’95 conference proceedings.

