SRC Technical Note
1997-007
2 January 1997

Checking object invariants

K. Rustan M. Leino and Raymie Stata

dliloli|tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright®©Digital Equipment Corporation 1997. All rights reserved

Abstract

When writing computer programs, programmers make assomgptibout the
relations among variables. In object-oriented progralrese assumptions include
relations among the instance variables of a single objelations often referred
to asobject invariants It is a good idea to explicitly annotate a program with
these assumptions. Then, a static program-analysis tnohsgect the annotated
program to check that routines preserve object invariaftss paper considers
two issues that affect what object invariants a programyaigtool can check:
object construction and modular checking. The paper siiggeme programming
idioms and program annotations that widen the range of bijjeariants that a
static program checker can check. The paper also suggeistpke £xtension to
the Java programming language that makes the language merehle to object-
invariant checking.

KRML 74 -0

Checking object invariants

K. Rustan M. Leinoand Raymie Stata
2 January 1997

SR@ Digital Equipment Corporation Systems Research Center

130 Lytton Ave., Palo Alto, CA 94301, U.S.A.
{rustan, stata}@a. dec.com

Abstract. When writing computer programs, programmers make assumptions about

0

the relations among variables. In object-oriented programs, these assumptions
include relations among the instance variables of a single object, relations ofte
referred to abject invariants It is a good idea to explicitly annotate a pro-
gram with these assumptions. Then, a static program-analysis tool can inspect
the annotated program to check that routines preserve object invariants. This pa
per considers two issues that affect what object invariants a program artalylsi

can check: object construction and modular checking. The paper suggests some
programming idioms and program annotations that widen the range of object in-
variants that a static program checker can check. The paper also suggests a sim
ple extension to the Java programming language that makes the language more
amenable to object-invariant checking.

| ntroduction

When writing programs, programmers make assumptions about the relations among
variables. In object-oriented programs, these assumptions include relatong @he
instance variables of a single object, relations often referredabjast invariants As a

simple example, an object’s invariant might state that a given instam@bleis never

null . A routine accessing this variable can assume the variable isulbtand thus can
safely dereference it, but the routine must take care not to set the vaoatnlg! .

Unfortunately, preserving object invariants is often more tedious than siakilyg

care that a single instance variable is mutll . It is all too easy to write buggy code
that mistakenly breaks object invariants. These bugs are hard to find belcaysean-
ifest themselves far from the actual coding errors. To avoid these bugsfid sistic
program checker would inspect a program to check that routines preserve objeet inva
ants. Such a checker would take as input a program annotated with the invarigats to

KRML 74 -1

checked and perhaps other information. The checker would compare the code of rou-
tines against the annotations and report when the code fails to preservents/aiach

a checker must be capable of statically checking program assertions and thus would be
more like a program verifier thanla nt -like tool. However, unlike a verifier, such a
checker need not check for full, functional correctness, making it more viabledotipr

cal use. The Extended Static Checking (ESC) project has shown that such shereker
feasible and useful for everyday programs [0O].

This paper discusses two issues that arise when integrating objectirvarecking
into an ESC-like tool. The first issue is checking that invariants arbélestad at object
creation, which depends heavily on the semantics of the language being checked. The
paper looks at the object-construction semantics of three languages, Modula-3, Java,
and Theta, and describes and compares the checking rules for all three languages. |
also describes a small addition to Java’'s constructors that enhancesithefuthecked
object invariants.

The second issue discussed by this paper is modular checking of object invariants.
Modular checking in this context means that a class can be checked once when itis im
plemented and need not be re-checked in every program that instantiates itlassec
from it. Modular checking requires placing limitations on where object inmésiaan
be declared. The paper shows that a naive set of limitations is overictigstand
shows how to relax these restrictions by placing limitations on wherenosteariables
can be updated.

Section 1 describes object invariants in a little more detail. Se&itmoks at in-
variants of newly-constructed objects. Section 3 looks at the requirements ofanodul
checking. Section 4 discusses some related work, in particuiaiime assertion check-
ing, found in Eiffel and Anna, angalidity variables an alternative approach to static
checking of object invariants. Section 5 presents some concluding remarks.

1 Object invariants

An object invariant is a relation among the values of the instance variabkesingle
object. Consider the following example.

class C {
intf,g;
[*invariant f <g; */

KRML 74 -2

This program fragment declares a cla&Sswith two integer instance variable$, and
g. The class is annotated with an object invariéint g.

Object invariants are to hold at all routine boundaries, that is, on entry ahtbexi
all routines. This rule is enforced by an object-invariant checker. For exarsmbpose
classC declares a methoth:

method m() {

f=f+5;

g:=90g+5;

nQ ;

iff £gthenf:=f+1lend;
}

The checker assumes that the object invariant g holds on entry to methoan,
and checks that the invariant holds at the next routine boundary, the call to method
The checker assumes that the object invariant holds upon returnriroamd checks
that it holds at the following routine boundary, the endnos method body. Note that
it is possible that the object invariant does not hold between the incremeftsoé
g; the requirement is only that it hold on routine boundaries. (It is possible to relax
the requirement that invariants holdat boundaries, but for simplicity we avoid this
generalization.)

A method can have additional annotations that an object-invariant checkeaksll t
into consideration. For example, consider the following additional method of €lass

method k(intd) /* requiresO<d* {
g:=g+d
}

In showing that methodk maintains the object invariant, the checker assumes the pre-
condition 0< d, and in showing that clients o€ don’t mess upC'’s object invariant,
the checker enforces this precondition. We assume that any object-invariekecha-
der consideration can handle method annotations like preconditions, but we don’t focus
on them in the paper.

A subclass inherits the instance variables and object invariants deciateguper-
classes. A subclass can declare additional instance variables and proedeamigri-

KRML 74 -3

ants for them. For example,

class D extends C {
Tx
[* invariant x # null ; */

}

declaresD to be a subclass of clags. ClassD introduces a new instance variable
x of some object typ€l , and declares as an object invariant tiRas non-null. The
object invariant for an object of typP is the conjunction of the “local” object invariants
f < g and x # null declared in classe€ and D, respectively.

2 Establishing object invariantsinitially

Once a new object is allocated, the object’s invariant must be establishtiadyinirhe
process of ensuring that an object’s invariant holds after the object has beaiizedt
poses some challenges to an object-invariant checker. The following Modrdgént
illustrates:
t:=new(T);
: (0)
PO
The construchew(T) allocates storage for an object of claBsand returns a reference
to that storage. Before returning, the call hew sets each instance variable of the
object to some arbitrary value of the variable’s type. Code fragment (0) ends wéll
to some procedur®. At this procedure boundary, the invariant of the newly allocated
objectt is required to hold. However, establishing this object invariant is trithan
it may seem, because the code fragment may appear in a scope where not all of the
object’s instance variables can be accessed.
Languages differ greatly in their mechanisms for object creation and indiedn, so
the challenges of ensuring that object invariants hold after initializatiéer dh different
languages. Further, from the perspective of checking invariants at objeatization
time, some languages are better than others. This is because differetizatitia
mechanisms require the checker to enforce different rules, and some rolesralre
invariants to be checked than do other rules.
This section looks at the object creation mechanisms of three object-oriamted |
guages. For each, it explains what rules an object-invariant checker wouldetdorc

KRML 74 -4

ensure that object invariants are properly established during initializalihe section
also points out how some of these rules are more flexible than others.

Modula-3. In Modula-3, a new instance of a clagsis allocated by callinghew(T) .

A program can associate with each instance variable a constant expresitgointice
variable’sdefault value The call to new initializes each instance variable of the new
object to its default value if the variable has an associated default,\atddo an arbi-
trary value of the variable’s type otherwise.

In Modula-3, a call tonew(T) may be placed in a scope where not all instance
variables of T are visible. The code that immediately follows the callrtew is then
unable to affect the values of those variables. A programmer’s only hope is that the
default values of those variables satisfy the appropriate object invariéhts, rather
than checking each call toew, an object-invariant checker performs a check for each
object-invariant declaration. The check enforces that the values assiymestance
variables bynew satisfy the object invariant. Code that invokeaw can then simply
assume the new object to satisfy its object invariant.

The downside to default values is that they rule out many useful invariants.isThi
especially true for instance variables that are references to othetotjee only con-
stant value for references raull, so an invariant saying that an instance variable is not
null can never be satisfied by default values. To support checking of more interesting
invariants, a mechanism other than default values is needed.

Java. Java hagonstructorscode responsible for initializing newly allocated objects.
Constructors give class implementors more control over the initial valuesedtsiihan
do default values. However, details of a language’s constructor mechanisgnezty
affect the rules enforced by an object-invariant checker.

A class in Java declares a superclass, a list of instance variabgfanethods, and
a set of constructors. In addition, instance variables can be associataditiatizers,
pieces of executable code that compute initial values for the variablesséislallowed
to have several constructors taking different parameters; a clienfisgeghich one of
the constructors to invoke by providing a list of parameters whose types matclofhose
the desired constructor. There is a syntactic restriction on the executadgegiven by
constructors: a constructor must start by calling a constructor of the supeidss
calling another constructor of the same class. The second of these is provided by the
language so that two constructors can share code conveniently by letting one ¢onstruc
call the other; the rest of this section focuses only on constructors of the first kind.

KRML 74 -5

A new instance of a clas$ is allocated by the expression
new T(... parameters to constructor.)

Executing such an expression allocates space for the new object, setsnstange
variable of the new object to zero-equivalent constarfthat is, O for integersfalse

for booleans,null for objects,etc), executes the constructor specified by the types of
the constructor parameters, and finally returns a reference to the objeohs&uwctor

is executed as follows. First, the superclass constructor specifidx ioohstructor’s
body is executed. Then, for each instance variable that the class dediarassociated
initializer is evaluated and the result is assigned to the instanca@riFinally, the rest

of the constructor body is executed.

In languages with constructors, it makes sense to require that the constructor of

a class take responsibility for establishing any object invariant thatliss declares.
This rule is easy for programmers to remember, easy for an ESC-likeanvahecker
to enforce, and ensures that all of an object’s invariants are estabbsheddurn from

new .

The task of defining an object-invariant checker for Java is complicatedveoee
by liberal rules regarding the use dftifis” in initializer code and in constructor bodies.

In initializer code and constructor bodies, the special variabie refers to the object

being constructed. However, during the execution of superclass constructtingr nei

the initializer code nor the constructor bodies of subclasses have run yet, soenstanc
variables ofthis defined by subclasses have zero-equivalent constants. These constants
might not satisfy the invariants of subclasses, making any ugéisfin an initializer

or constructor body unsafe from the perspective of an object invariant checkex-For e
ample, if a superclass constructor invokes a method that is overridden by assyltee
subclass’s code for the method will start executing before the subclass’sumoshas

had a chance to establish the subclass’s invariants. (In an attenwoiddfas problem,

C++ temporarily changes the method suitelofs during the call to the superclass con-
structor so that method calls do not dispatch to subclass code. This does not solve the
problem completely in C++, and it also introduces new difficulties.)

An object-invariant checker can take two approaches to solving the problems posed
by uses ofthis during object construction. First, it can take the approach described
for Modula-3 above: restrict checkable object invariants to those thatwdadr the
default values of instance variables. However, in Java, the defaulewvaif instance
variables are the zero-equivalent constants, not programmer-defined congthists.
restricts checkable object invariants even more severely than in M3dgia severely
that very little useful checking is possible.

KRML 74 -6

The second approach is to outlaw most usesho$ in initializers and constructor
bodies. In particular, no methods dfis can be invoked, andhis cannot be assigned
to global locations or passed as a parameter. The onlytes/can be used in these
contexts is to read and write its instance variables. The checker wik¢hat the object
invariant for this holds on exit from constructors, but, because of the severe restrictions
on this in the constructor body, it need not check that the invariant holds before then.

Theta. Like Java, the programming language Theta [1] has constructors. However,
constructors in Theta were designed with object invariants in mind, avoidengrob-
lems with uses othis found in Java (and other languages).

In Theta, constructors are terminatedingke statements, thatis, likesturn state-
ments in ordinary methodsnake statements terminate the invocations of constructors.
In addition to terminating the constructanake statements initialize a new object.

The form of amake statement is

make {inits ; supercongthen

end ,
whereinits is a sequence of assignments to the instance variables defined locally by the
class, superconsis a call to a superclass constructor, and thieeh -block” is a block
of code, like any block of code found in method bodies. Whemake statement is
executed nits is executed to initialize the class’s local instance variables uperslass
constructor is called to initialize the superclass’s instance vasalite then -block
is executed, and finally the constructor returns to its caller. Thus, objedrectisn
occurs in two phases: the first phase goes from subclasses to superclasgzsnigit
instance variables, and the second phase goes from superclasses to sutxaastes)
then-blocks. In a Theta constructor, the special varialddf” can be used to refer to
the object being constructed, but only insitteen -blocks.

An object-invariant checker for Theta would ensure timtis of make statements
establish invariants on the class’s own instance variables, andhbatblocks, like
method bodies, preserve (not establish) the class’s invariant. This designstfuctors
is well suited for an object-invariant checker, sirsglf cannot be used until the instance
variables of the object have been initialized and the object satisfies @statwariant.

One may ask whyhen -blocks are included in constructors—after all, the construc-
tor has already established the object invariant by the timethay-block is executed,

so what else should a constructor do? Object construction often involves moresthan
tablishing the object invariant. For example, sometimes it is desiralddddhe new

KRML 74 -7

object to some global list of objects. In such cases, it is convenient to hiawit-an
second phase of the construction, which is wiiedn -blocks facilitate. Note that Java’s
constructors feature only one construction phase. Next, we explain how to extend Jav
to be better suited for object-invariant checking; with this extension, the rcmhst

body emerges as a second-phase constructor.

Javaextenson. We can improve Java’s constructors from the perspective of checking
object invariants by borrowing some syntax from C++ and some semantics fram The
In constructor implementations, before the constructor body, initializers coudd/ee

for instance variables after a colon. For example, the constructor of a Clastth
instance variable$ and g might look like

C(... parameters to constructor.)
f(B), 9(E)
{
... call to superclass constructor goes here
... rest of body of constructor goes here

Yoo

whereE and E' are expressions that are allowed to refer to the parameters of the con-
structor but not tathis. The semantics of such a constructor would be thahd g are
first initialized to the results of evaluating and E’, then the superclass constructor is
called, then the constructor body is executed. As in Theta, subclasses ar¢hgi\ap-
portunity to initialize their instance variables before the superclassrootst is called,
SO an object-invariant checker can allow arbitrary usesho$ inside the constructor
body.

These new initializers for instance variables obviate the need for Jadaisitializ-
ers that are associated with the instance variables themselveseagxkauted after the
superclass constructor is called. The new initializers have two advargagethe old
ones. First, by executing before the superclass constructor rather thamhafyeaivoid
problems with usingthis in the constructor body. Second, by associating them with
constructor definitions rather than with instance-variable definitions, theindaalize
instance variables to values that depend on the constructor’s parameterswikinds
of initializers do not interfere with one another, so Java’s old initiaizeuld be kept
in the language for backward compatibility.)

Supporting the new initializers in the Java virtual machine would require a change
to the byte-code verifier. Currently, the verifier ensures that the byte-codealdject
constructor does not do anything to itkis parameter until after the constructor has

KRML 74 -8

called a superclass constructor. To support the new initializers, theevdrds to be
relaxed to allow writing to instance variables tfis while still disallowing other uses
of this. This change is simple, and it is backward-compatible with the current verifie

3 Modularity and the placement of object invariants

To check that a program maintains its specified object invariants, an -obyactant
checker generaterification conditiongrom the program and the object invariants. A
verification condition is a logical formula that is valid only if the program mtains its
object invariants. The verification condition is passed to a theorem ptogee if it is
valid.

The information available in a given verification scope affects the geaeraf ver-
ification conditions in that scope. For example, if an instance variabgeconstrained
by the object invarianf > 0 and is not visible in some verification scope, then the
verification conditions generated in that scope mentions nefthesr its invariant. We
call this modular checking, since it allows scopes to be checked without having full
information about the program. Modular checking is said tedendif the truth of a
modularly-generated verification condition implies the truth of the conditiontbatd
have been generated in the presence of the full program [4]. To achieve soundnhss, e
scope must contain enough information to generate sufficiently strong veafican-
ditions. As an example of what goes wrong when not enough information is available,
if a scope contained the instance variabldut not the object invariant > 0, then
the verification conditions generated in that scope would not check that updates to
maintain the invariant.

The placement of object-invariant declarations relative to the placevhergtance-
variable definitions is crucial to the soundness of modular checking. Essentiatii; a
ject invariant must be visible in any scope where any variable it mentsorisible. We
call this condition thevisibility requirement(cf. [4]). Unless the visibility requirement
is satisfied, updates of a variable in some scopes are not guaranteed to beramhbira
every invariant that mentions the variable.

As an example, consider a claBeaderdeclared as

classReader{ int lo, cur, hi; ...} ,
and one ofReaders subclassesBlankReader declared elsewhere as

class BlankReadeextends Reader{ int max ... }

KRML 74 -9

According to the visibility requirement, it would be legal to add the objectriava
lo<cur A cur<hi

to classReader, and it would also be legal to add the object invariant
maxis a power of 2

to classBlankReader
For some programs, the visibility requirement can be overly restriatitang out
useful invariants. Consider, for example, the object invariant

hi<max . (2)

This invariant cannot be written in either claBgeaderor BlankReader It cannot be
written in classReaderbecause the instance varialfax is not visible there. It cannot
be written in clasBlankReaderbecause there are scopes whBeader, and thushi,
are visible but whereBlankReaderand max are not, violating the visibility require-
ment. Indeed, the methods &eaderare in such a scope, so placing invariant (1) in
BlankReademwould mean that a method of clafeadermight inadvertently increase
hi beyondmax.

Invariant (1) is taken from a real piece of code, the Modula-3 input streams li-
brary [2]. Instance variableur is the index of the next character to be returned by the
reader. Readers are buffered, dndand hi are indices that bracket the characters that
are stored in the buffeBlankReaders a simple subclass dkeader. A BlankReader
is an input stream of lengtmax (which is specified during object construction) and its
contents is all blank characters. Even though object invariant (1) violatessibdity
requirement, this library is believed to be correct becauseRbaderimplementation
of the methods does not modify the instance varidtile This example indicates that
the visibility requirement can be relaxed for an invariant if the checkealhraechanism
for “write protecting” instance variables in the invariant. Such a medamashould en-
sure that code in scopes where the invariant is not visible does not modify any of the
invariant’s variables.

Relaxing visibility with write protection. Simple annotations can provide just such a
write-protect mechanism. We describe these annotations in the context adilflagagh
they are applicable also to other object-oriented languages.

Like many object-oriented languages, Java features a sle@sagfss control modi-
fiers such asprivate and public, that can be part of the declaration of instance vari-
ables. Ordinarily, the modifiers determine which scopes are allowedhtbaied write

KRML 74 -10

each instance variable. We propose that an object-invariant checker esifghtly dif-
ferent rules. Under this proposal, the current access control modifiers are usedrol
the reading of instance variables only, and the writing of instance variabtesirolled
by additionalwrite modifiers

For each read modifier, likprivate, we introduce an analogous write modifier with
a similar name, likenritable-private. These write modifiers are included in comments
after the read modifier; if an instance variable declaration does not memtwarite
modifier, the write modifier defaults to the one analogous to the given read modifier.
For example, a simple use of write modifiers is

classC { public/* writable-private*/ intf; ... }

This declares a clas€ with an instance variablé that is publicly readable and only
privately writable. (This is a common programming idiom, usually realiaedeclaring
f as private and introducing a public methgdtF that returns the value df.)

In addition to write modifiers that mirror existing read modifiers, we intredac
special write modifierwritable-deferred , which designates that write access to the in-
stance variable is subclass-dependent. In particular, if an instaneéledriis declared
in a superclass as writable-deferred, then a subclas3 is allowed to set the write
modifier of f , provided that no other superclassDfhas already done so. If a variable
is writable-deferred to a scope, then that scope is not allowed to write the variable;
stated differentlywritable-deferred does not imply the privilege to write a variable.

The special write modifiewritable-deferred allows us to safely handle the anno-
tation of classefReaderand BlankReaderdescribed earlier. With write modifiers, the
classes can be declared as

class Reader{
protected /* writable-deferred */ int lo, hi;
protected int cur;

and

class BlankReadeextends Reader{
[* writable-private Readerlo, Readeri; */
privateint max

KRML 74 -11

This declares that methods of claBgadercan read instance variablés, cur, and
hi, but can write onlycur. Subclasses oReadercan read these instance variables too,
can write cur, and have the opportunity to define the write modifiers lforand hi .
The subclasBlankReaderdefines the write modifiers oo and hi in order that its
methods be able to write the instance variables. CBlaskReaderalso introduces the
instance variablenax, whose read and write accesses are restricted to methods of class
BlankReader

With write modifiers, the visibility requirement for object invariantsidze relaxed
as follows: an object invariant must be visible in any scope where angbtant men-
tions can be written Applied to the Readerand BlankReaderexample, this relaxed
visibility requirement allows clasfeaderto declare the invariant

lo <cur A cur < hi
and allows clas8lankReaderto declare the invariant
hi < max

The relaxed rule is sound because every scope that can update a variableisfaiva
invariants constraining the values of that variable.

Write protection and object initialization. Write protection adds a wrinkle to object
initialization. We said earlier that the constructors of a class are abtig@stablish
any object invariant that the class declares. However, witliable-deferred instance
variables, a class might not have permission to write to all the instaan@ables in its
invariants, making it hard for its constructors to establish its iawvds. For example,
constructors for the clasReadermust establish the condition

lo <cur A cur < hi ,

but by declaringlo and hi as writable-deferred, class Reader can write only cur
and has given up the right to write and hi.

One way to deal with this wrinkle is an idiom in which constructors declarecappr
priate preconditions on variables like and hi, and leave it to subclasses to establish
those conditions. In the case of claReader, a precondition that suffices is

lo <hi

This allows the clas®eaderconstructor to establish its invariant, for example by setting
cur to lo. The precondition dictates that the constructorBé@nkReaderinitialize the
instance variableto and hi accordingly before th&keaderconstructor is called.

KRML 74 -12

Unfortunately, this idiom does not work in languages like Java in which subclass
constructors do not have a chance to initialize their instance variables fuetisaper-
class constructors are finished. (This is another reason to extend Java asesligjges
Section 2.) The idiom also does not work unless the subclass is allowed to pravide a
initializer for instance variables declared (asitable-deferred) in a superclass.

If the idiom above cannot be used with the language at hand, one can instead change
the semantics ofvritable-deferred somewhat to allow the constructors to assign initial
values to those instance variables that the class declaresitable-deferred. Pro-
grammers can then use the following idiom to establish invariantslipitia subclass
constructor passes the initial valueswfitable-deferred instance variables as param-
eters to its superclass constructor. For example,Rkeader constructor would take
two parameters, salow and high, and would specify the preconditidlow < high
(which enablesReaderto establish the object invariant it declares) and postcondition
lo = low A hi = high (which enableBlankReaderto establish the object invariant it
declares).

Further relaxing visibility. Even the relaxed visibility requirement is stricter than we
would like. In particular, either form of the visibility requirement makeslifficult

to check invariants that mention instance variables of instance vesidbte example,
consider the following class:

classV {
int X, y, cx, cy,
int xCenter yCenter
invariant x < xCenter< x+cx A y <yCenter<y+cy;

}

The invariant declared in this class satisfies the visibility requerembecause all of
the variables it mentions are declared in the same class as the imveaédf. However,

KRML 74 -13

suppose the first four fields were replaced by a single rectangle object oRigte

classV' {
Rect r;
int xCenter yCenter
invariant r # null
A r.x < xCenter<r.Xx-+r.cx
A 1y <yCenter<r.y+r.cy;

}

This object invariant is not allowed because it violates the (relaxed)iMigirequire-
ment: theRectinstance variableg, y, cx, andcy are not declared in the same scope
as the invariant. This is potentially a real problem, because there can bthebdsod-
ifies these fields of &ect object without knowing anything abowtCenter, yCenter,
or the object invariant of clasg’ .

Still, many programmers may find this a useful object invariant. A possiugatge
toward solving this problem is to introduce the notionrdined objects. The following
example illustrates the idea.

classV” {
/* inlined */ Rect r.
int xCenter yCenter
invariant r # null
A r.x < xCenter<r.Xx-+r.cx
A 1y <yCenter<r.y+r.cy;

method moveXint dx) {
r.transposedx, 0) ;
xCenter:= xCenter+ dx;
}
}

Here, instance variable is declared to contain only inlined objects. That declaration
allows classV” to declare an object invariant that mentions the instance variables of
r, despite the fact that those are declared in clBsgt. Since the implementation

of classRect couldn’t reasonably be expected to maintain e object invariant, the
invocation of, for example, th&ect methodtransposein methodmoveXabove cannot

KRML 74 -14

be assumed to return in state where Wieobject invariant holds. Instead, the checker
will expect the implementation afnoveXto reestablish th&/” object invariant before
the next routine boundary.

In order for this approach to be sound, one needs to worry abolgekiegof r , that
is, roughly, the possibility that the object referencedrbig accessible from outside the
implementation of clasy’. This is a complicated problem which we will not attempt
to solve here. Instead, we simply note that the problem is quite related teakiad
problems that arise in the context dgynamic dependencigS], a partial solution for
which is described in KRML 68 [3].

4 Related work

An alternative to checking object invariants statically is to chéeat dynamically via
run-time assertions. Programming systems often providessert pragma or macro
with which a programmer can manually insert run-time assertions at routine basida
There are also more automated approaches; for example, invariants declanaa [7]

or Eiffel [8] compile into run-time checks at appropriate boundaries. Histibyjctatic
checkers for object invariants have not been available, so all checking ot objag-
ants has been done dynamically.

The relative merits of static versus dynamic checking are well understoodhiand
understanding applies equally to the checking of object invariants. Just as dygpmic t
ing provides flexibility over static typing, dynamic checking of object invariamats
check a larger variety of invariants than can static checking. For examph@amic
checking does not involve restrictions like those discussed for static checkibecH
tion 3. The major advantage of static checking is that it can find errors regrlibe
development cycle than can dynamic checking. A further advantage of static checking
is that it checks the program for all inputs. In contrast, the effectiveness ofrdgna
checking depends on the selection of a good set of test cases, an arduous process that's
often ignored.

The rest of this section discusses the object-invariant checking proposesipaplar
with the approach taken in ESC. ESC does not have a built-in notion of objeckinvar
ants. Instead, it takes a more general approach, encoding object invarianthasiatpt
abstraction features of the ESC tool. The idiom used in ESC is to introduce acibs
field valid for each object. The concrete representatiorvalid reveals a condition
under which the object is “valid”, that is, a condition describing the object iamarAn
advantage of this approach is that no special treatment of object invariardseded,;
reasoning about the program is done in terms of abstract variables, one of which is

KRML 74 -15

valid. A second advantage of thialidity approach as we shall call it, is that program-
mers get full control in specifying when an object is assumed to be valid anal ivise
not. Among other things, this second advantage allows classes to have “clabetisie
that destroy the validity of object, perhaps by freeing some expensive systeunaes
that the object needs in order to be valid.

Building the concept of object invariants into the static checker requiresaspeci
mechanisms in the checker and does not allow as much flexibility when it comes to,
for example, allowing objects to be invalidated during their lifetime. &beantage of
built-in invariants is some simplicity over the validity approach:

e Fewer abstract variables. Since object invariants hold implicitvaty routine
boundary, there is no need to introduce an abstract variadlid.

e Simpler public interfaces. The object invariantis implicitly part ofgu@utine’s
pre- and postconditions. Thus, for example, one doesn’t need to manually specify
that every method requires validity.

e More manageable with recursive structures. Experience with ESC inslitete
there are problems with the performance of the underlying mechanical theorem
prover when one attempts to reason about programs that contain recursive data
structures such as trees and linked lists. Because an object invai@aedlito one
object, rather than being a function of the validity of the “next” object, the same
performance problems do not arise with built-in object invariants.

The validity approach uses ESC'’s data abstraction facility, so it isurptising that
the issues that arose in designing that facility also arise when designimecker that
checks directly for object invariants. For example, data abstraction escaivisibility
requirement similar to the one outlined in this paper [4]. Also, leaking is a profide
data abstraction just as it is for object invariants [5]. Finally, the rieedrite protect
instance variables also arises in the validity approach. In the valgipyoach, write
protectionis achieved through a specification idiom caked-only by specificatiof].

5 Conclusions

In this paper, we have outlined how the checking of object invariants can bertailt i
an ESC-like, static checker. We focused on two issues that arise whignidgssuch
a checker: how object invariants are established initially, and in wé@tes object
invariants are allowed to be declared.

KRML 74 -16

For the first focus, we showed how the details of a language’s design influence how
a checker ensures that invariants are established upon object creation. Vel point
that careful language design can enable the checking of a wider range of invaahts,
suggested a backward-compatible extension to Java that improves the language in t
regard.

For the second focus, we showed that an object-invariant checker can ddoyea
variety of object invariants if the scopes in which instance variablaesbeaupdated is
limited. We showed a methodology of write protecting instance variablegduntr
ing a special write modifier calledritable-deferred. This methodology enables the
checking of a wider range of invariants.

References

[0] Extended Static Checking home page, Digital EQuipment Corporation, Systems Re-
search Center. On the Webdtt p: / / ww. r esear ch. di gi t al . coml SRC/
esc/ Esc. htnl .

[1] Theta. Onthe Web dittp://clef.lcs. mt. edu/ Theta. htm .

[2] Mark R. Brown and Greg Nelson. I/O streams: Abstract types, rearmms. In
Greg Nelson, editorSystems Programming with Modula-Series in Innovative
Technology, pages 130-169. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[3] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestlinghwigp ex-
posure. KRML 68, Digital Equipment Corporation Systems Research Center, July
1996.

[4] K. Rustan M. Leino. Toward Reliable Modular ProgramsPhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[5] K. Rustan M. Leino and Greg Nelson. Beyond stacks. KRML 54, Digital Equipment
Corporation Systems Research Center, July 1995.

[6] K. Rustan M. Leino and Greg Nelson. Read-only by specification. KRML 58,
Digital Equipment Corporation Systems Research Center, September 1995.

[7] David C. Luckham.Programming with Specifications: An Introduction to ANNA,
a Language for Specifying Ada Programdexts and Monographs in Computer
Science. Springer-Verlag, 1990.

KRML 74 -17

[8] Bertrand Meyer.Object-oriented Software Constructio®eries in Computer Sci-
ence. Prentice-Hall International, New York, 1988.

