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Greg Nelson defined areachability predicateand gave eight axioms about it [0]. He
proved the axioms sound with respect to a model, but it is not known whether the axioms
are complete. In working with the reachability predicate, we noticed we were making
use of a ninth property. If the eight axioms were complete, the ninth property would
follow from the eight axioms. We have not shown this to be the case in general, but
we show in this note that, forfinite domains, the ninth property follows from the eight
axioms and mathematical induction.

The reachability predicate is written

x
f

−→
z

y

where f is a function andx , y , and z are elements in the domain off . The predicate
is pronounced “x reachesy via f avoiding z”. Its standard model of interpretation is
that some number of applications off to x , none of which is applied toz, yields y ; in
symbols,

〈 ∃ n F f n.x = y ∧ 〈∀ m




 m < n F f m.x 6= z 〉〉 ,

where m and n range over the natural numbers. However, we will not appeal to this
model directly. Instead, we will confine our attention to eight axioms, given below.

The “ninth property” to which we alluded is:

x
f

−→
z

y ≡ x = y ∨ 〈∃ u F x
f

−→
z

u ∧ u 6= z ∧ f .u = y 〉 . (0)

The right-hand side of this property says that eitherx and y are equal, or there is a last
hop in the path fromx to y . As we will show in this note, the ⇐ direction of the
equivalence (0) follows from Greg Nelson’s eight axioms. We will also show that the
⇒ direction follows from the axioms if the domain off is finite. We do not know if

the ⇒ direction follows from the eight axioms if the domain off is infinite.
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Although it’s a pity we haven’t proved anything about the⇒ direction of (0)
for infinite domains, the restriction to finite domains is for our purposes not totally
unreasonable. The primary application of the reachability predicate that we have in
mind (as did Greg Nelson in 1983) is reasoning about whether or not an objecty can
be reached from an objectx by applications of an object fieldf , which is really a map
from objects to objects. (For this application,z is usually the special objectnil .) At
any time in the execution of a program, the number of allocated objects is finite;hence,
so is the domain off .

Greg Nelson’s eight axioms are:

u
f

−→
x

v ≡ u = v ∨ (u 6= x ∧ f .u
f

−→
x

v) (1)

u
f

−→
x

v ∧ v
f

−→
x

w ⇒ u
f

−→
x

w (2)

u
f

−→
x

v ⇒ u
f

−→ v (3)

u
f

−→
y

x ∧ u
f

−→
z

y ⇒ u
f

−→
z

x (4)

u
f

−→ x ∨ u
f

−→ y ⇒ u
f

−→
y

x ∨ u
f

−→
x

y (5)

u
f

−→
y

x ∧ u
f

−→
z

y ⇒ x
f

−→
z

y (6)

f .u
f

−→ v ≡ f .u
f

−→
u

v (7)

u
f (p:=q)
−→

x,p
v ≡ u

f
−→

x,p
v (8)

Each axiom is implicitly universally quantified over all alphabetical symbols occurring
in it. The axioms make use of two shorthands for the reachability predicate. First,
leaving out the element under the arrow is a shorthand for putting the right-hand side of
the arrow there:

x
f

−→ y ≡ x
f

−→
y

y . (9)
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Second, writing more than one element under the arrow is a shorthand for writing a
conjunction of reachability predicates:

x
f

−→
z,w

y ≡ x
f

−→
z

y ∧ x
f

−→
w

y . (10)

The axioms also mention thefunction update operator, written f (x := y) , where f is a
function andx and y are elements. Functionf (x := y) is like f , except atx where it
yields y . Formally,

f (u := v).u = v ∧ 〈∀ x




 x 6= u F f (u := v).x = f .x 〉 . (11)

Let us now prove the following theorem, the⇐ direction of property (0):

Theorem. For any f , x , y , and z,

x
f

−→
z

y ⇐ x = y ∨ 〈∃ u F x
f

−→
z

u ∧ u 6= z ∧ f .u = y 〉 (12)

Proof. First, note that by axiom (1), the relation
f

−→
z

is reflexive. Thus, the left-hand

side of (12) follows from the disjunctx = y . Focusing now on the other disjunct, we
calculate, for anyu ,

x
f

−→
z

u ∧ u 6= z ∧ f .u = y

⇒ f axiom (1):
f

−→
z

is reflexive g
x

f
−→

z
u ∧ u 6= z ∧ f .u

f
−→

z
y

⇒ f axiom (1): u 6= z ∧ f .u
f

−→
z

y ⇒ u
f

−→
z

y g
x

f
−→

z
u ∧ u

f
−→

z
y

⇒ f axiom (2): transitivity of
f

−→
z

g
x

f
−→

z
y .

Before getting to the ⇒ direction of (0), it will be useful to prove three lemmas.

Lemma. For any f , x , y , and z,

x 6= y ⇒ (x
f

−→
z

y ≡ x 6= z ∧ f .x
f

−→
z

y) . (13)

Proof. Under the antecedent, we calculate,
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x
f

−→
z

y

≡ f axiom (1) g
x = y ∨ (x 6= z ∧ f .x

f
−→

z
y)

≡ f x 6= y g
x 6= z ∧ f .x

f
−→

z
y .

The next two lemmas are in some sense generalizations of axioms (7) and (8), re-
spectively.

Lemma. For any f , b , x , and w ,

f .b = x ∧ x 6= w ⇒ (f .x
f

−→ w ≡ f .x
f

−→
b

w) . (14)

Proof. Under the antecedent, we calculate,

f .x
f

−→
b

w

⇒ f axiom (3) g
f .x

f
−→ w

≡ f x 6= w g
x = w ∨ (x 6= w ∧ f .x

f
−→ w)

≡ f axiom (1) and shorthand (9)g
x

f
−→ w

≡ f axiom (7), sincex = f .b g
x

f
−→

b
w

≡ f lemma (13), sincex 6= w g
x 6= b ∧ f .x

f
−→

b
w

⇒

f .x
f

−→
b

w .

Lemma. For any f , b , x , w , and z,

f .b = x ∧ x 6= w ⇒ (f .x
f

−→
z

w ≡ f .x
f (b:=f .x)
−→

z
w) (15)
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Proof. Under the antecedent, we calculate,

f .x
f

−→
z

w

≡ f shorthand (10); and lemma (14), sincef .b = x ∧ x 6= w g
f .x

f
−→

z,b
w

≡ f axiom (8) g
f .x

f (b:=f .x)
−→

z,b
w

≡ f shorthand (10); and axiom (7), sincef (b := f .x).b = f .x g
f .x

f (b:=f .x)
−→

z
w .

The rest of this note concerns the proof of the⇒ direction of property (0) for
finite domains:

Theorem. For any f , x , y , and z, where the size of the domain off is finite,

x
f

−→
z

y ⇒ x = y ∨ 〈∃ u F x
f

−→
z

u ∧ u 6= z ∧ f .u = y 〉 . (16)

Proof. The proof is by induction on the size of the domain off .
If the size of the domain off is 0, the theorem holds vacuously. If the size of the

domain is 1, the disjunctx = y in the consequent holds trivially, and thus so does the
theorem.

From now on, we consider anf with a domain with at least 2 elements; call itS.
We will prove the induction step by proving

〈 ∃ u F x
f

−→
z

u ∧ u 6= z ∧ f .u = y 〉 (17)

under the assumptions

x
f

−→
z

y (18)

and

x 6= y . (19)

Let’s start with an observation: From the givens (18) and (19) and lemma (13), we
have

x 6= z ∧ f .x
f

−→
z

y . (20)
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From (20), we see that we’re done iff .x = y , for then (17) holds withx for u . Hence,
let’s assume

f .x 6= y . (21)

So that we can apply the induction hypothesis, we define a smaller domain, a func-
tion on that domain, and a mapping fromS to the smaller domain. LetS′ denote
S {x} . As the mapping of elements, we define a function: S → S′ as follows: for
any elemente ∈ S,

e =

{

e if e 6= x
f .x if e = x

(22)

To show thate is indeed inS′ , we must showf .x ∈ S′ . We calculate, beginning from
the second conjunct of (20),

f .x
f

−→
z

y

⇒ f axiom (3) g
f .x

f
−→ y

≡ f axiom (7) g
f .x

f
−→

x
y

≡ f lemma (13), since (21):f .x 6= y g
f .x 6= x ∧ f .(f .x)

f
−→

x
y

⇒

(23)f .x 6= x .

From (19) and (20) and definition (22), we have

x = f .x ∧ y = y ∧ z = z . (24)

Consequently, from (21), we also have

x 6= y . (25)

Finally, for every elemente ∈ S′ , we define functionf ′: S′ → S′ by

f ′.e = f .e . (26)

From the induction hypothesis, we have

x
f ′

−→
z

y ⇒ x = y ∨ 〈∃ u




 u ∈ S′ F x
f ′

−→
z

u ∧ u 6= z ∧ f ′.u = y 〉 . (27)
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Our plan is to show the antecedent of (27). By (25), we then have the existential quan-
tification, from which we will later dismiss our proof obligation (17). We will make use
of the following lemma, which we will prove later: for anyw ,

x 6= w ⇒ (f .x
f ′

−→
z

w ≡ x
f

−→
z

w) . (28)

Here’s the proof of the antecedent of (27):

x
f ′

−→
z

y

≡ f (24) g
f .x

f ′

−→
z

y

≡ f lemma (28), since (19):x 6= y g
x

f
−→

z
y

≡ f (18) g
true .

Having established the antecedent of (27), the consequent of (27) and (25) gives us:

〈 ∃ u




 u ∈ S′ F x
f ′

−→
z

u ∧ u 6= z ∧ f ′.u = y 〉 . (29)

Before massaging this formula, we do a little calculation, from which we will conclude,
for any e ∈ S′ ,

f ′.e = y ⇒ f .e = y . (30)

Here’s the calculation: for anye ∈ S′ ,

f ′.e = y
≡ f (26): definition of f ′ g

f .e = y
≡ f (22): definition of g

(f .e 6= x ∧ f .e = y) ∨ (f .e= x ∧ f .x = y)
≡ f (21): f .x 6= y g

f .e 6= x ∧ f .e = y
⇒

f .e = y .

Now we are ready to massage (29):
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〈 ∃ u




 u ∈ S′ F x
f ′

−→
z

u ∧ u 6= z ∧ f ′.u = y 〉

≡ f (24) g
〈 ∃ u





 u ∈ S′ F f .x
f ′

−→
z

u ∧ u 6= z ∧ f ′.u = y 〉

⇒ f (30) g
〈 ∃ u





 u ∈ S′ F f .x
f ′

−→
z

u ∧ u 6= z ∧ f .u = y 〉

≡ f lemma (28), since (u ∈ S′ ∧ x 6∈ S′ which implies)u 6= x g
〈 ∃ u





 u ∈ S′ F x
f

−→
z

u ∧ u 6= z ∧ f .u = y 〉

⇒

〈∃ u F x
f

−→
z

u ∧ u 6= z ∧ f .u = y 〉 .

We have now arrived at our proof obligation (17), but during our journey we incurred an
obligation to establish lemma (28). Hence, for anyw that satisfies

x 6= w , (31)

we calculate,

x
f

−→
z

w

≡ f lemma (13), since (31):x 6= w g
x 6= z ∧ f .x

f
−→

z
w

≡ f (20): x 6= z g
f .x

f
−→

z
w .

This calculation reduces the proof of lemma (28) to the proof of:

f .x
f

−→
z

w ≡ f .x
f ′

−→
z

w . (32)

The function update operator gives us a way to writef ′ in term of f . An inspection of
the definition off ′ (26) and (22) leads us to the assertion

f ′ = f (b0 := f .x)(b1 := f .x) · · · (bn−1 := f .x) , (33)

where b0,b1, . . . ,bn−1 are the “f -predecessors” ofx , that is, the values from which
one application off yields x . Using formulation (33), equation (32) can be written as

f .x
f

−→
z

w ≡ f .x
f (b0:=f .x)(b1:=f .x)···(bn−1:=f .x)

−→
z

w . (34)



KRML 81 -8

We define a functiongj for every j satisfying 0≤ j ≤ n :

g0 = f
gj+1 = gj(bj := f .x) for j : 0 ≤ j < n .

Thus, g0 = f and gn = f ′ , and for eachj satisfying 0≤ j < n ,

gj.x = f .x ∧ gj.bj = f .bj = x . (35)

The first conjunct of (35) holds becausex is not an f -predecessor of itself (23).
Equation (34) now follows fromn applications of lemma (15): For eachj satisfying

0 ≤ j < n , lemma (15) yields

f .x
gj

−→
z

w ≡ f .x
gj+1
−→

z
w ,

because of the properties aboutgj (35) andx 6= w (31).
This concludes the proof.

We can actually strengthen the term of the existential quantification of property (0):

Corollary. For any f , x , y , and z, where the size of the domain off is finite,

x
f

−→
z

y ≡ x = y ∨ 〈∃ u F x
f

−→
y,z

u ∧ u 6= z ∧ u 6= y ∧ f .u = y 〉 . (36)

Proof. The ⇐ direction of (36) follows directly from theorem (12), since the right-
hand side of (36) is stronger than the right-hand side of (12).

For the ⇒ direction, it suffices to show

〈 ∃ u F x
f

−→
y,z

u ∧ u 6= z ∧ u 6= y ∧ f .u = y 〉 (37)

under the assumption

x
f

−→
z

y ∧ x 6= y . (38)

From the first conjunct of (38), we calculate,

x
f

−→
z

y

⇒ f axiom (3); and shorthand (9)g
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x
f

−→
y

y

⇒ f theorem (16), withz := y g
x = y ∨ 〈∃ u F x

f
−→

y
u ∧ u 6= y ∧ f .u = y 〉

≡ f (38): x 6= y g
(39)〈 ∃ u F x

f
−→

y
u ∧ u 6= y ∧ f .u = y 〉 .

Our proof obligation (37) follows from (39) and

〈 ∀ u F x
f

−→
y

u ∧ u 6= y ∧ f .u = y ⇒ x
f

−→
z

u ∧ u 6= z 〉 .

To take care of this last proof obligation, we calculate, for anyu ,

x
f

−→
y

u ∧ u 6= y ∧ f .u = y

⇒ f drop third conjunct; and (38):x
f

−→
z

y g
x

f
−→

y
u ∧ x

f
−→

z
y ∧ u 6= y

⇒ f axioms (4) and (6) g
x

f
−→

z
u ∧ u

f
−→

z
y ∧ u 6= y

≡ f lemma (13), sinceu 6= y g
x

f
−→

z
u ∧ u 6= z ∧ f .u

f
−→

z
y ∧ u 6= y

⇒

x
f

−→
z

u ∧ u 6= z .

Acknowledgements. Jim Saxe proved lemma (14).
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