
KRML 87 -0

Positively capjunctive cappings, and Galois
K. Rustan M. Leino
5 January 1998

Digital Equipment Corporation Systems Research Center
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.
rustan@pa.dec.com

Abstract. This note defines an operator2′ which maps any predicate transformer to its least-
refined positively conjunctive predicate transformer. Operator 2′ is similar to Carroll Morgan’s2 operator, which maps any predicate transformer to its least-refined universally conjunctive
predicate transformer. The proof that2′ has the desired properties makes use of Morgan’s
results and Galois connections. The definition of2′ turns out to have an interesting, and, at
least to me, novel ingredient.

0 Introduction

Carroll Morgan defines a function2 , which has the following properties [2]: For any
predicate transformerS,

(0)2.S∈ C>
∧

(1)〈 ∀ c




 c ∈ C>
∧ F Sv c ≡ 2.Sv c 〉

where C>
∧ denotes the set of all universally conjunctive predicate transformers andv

is the refinement ordering on predicate transformers.
Rajit Manohar and I have the need for a function2′ with the following proper-

ties [0]: For any predicate transformerS,

(2)2′.S∈ S0

(3)〈 ∀ c




 c ∈ S0 F Sv c ≡ 2′.Sv c 〉

where S0 denotes the set of all positively conjunctive predicate transformers. Paul
Gardiner suggested to us that we define function2′ in terms of2 as follows: For any
predicate transformerS and predicateF ,2′.S.F ≡ S.true ∧ 2.S.F (4)

Enticed by Gardiner’s definition, we became interested in proving properties (2) and (3)
from the definition of2′ . That is the subject of this note.

As it turns out, if2′ is defined by (4), it will satisfy property (3) only for predicate
transformersS that aremonotonic(with respect to the refinement ordering). The desired

KRML 87 -1

definition of2′ in terms of2 is instead: For any predicate transformerS and predicate
F , 2′.S.F ≡ 〈∃ F F S.F 〉 ∧ 2.S.F (5)

Note that the right-hand sides of definitions (4) and (5) are the same ifS is monotonic:

S.true
⇒ f F := true g

〈 ∃ F F S.F 〉

⇒ f [F ⇒ true] , so if S is monotonic, then [S.F ⇒ S.true] g
〈 ∃ F F S.true 〉

= f predicate calculus (since range ofF is nonempty) g
S.true

This calculation shows that ifS is monotonic, then

[S.true ≡ 〈∃ F F S.F 〉]

The rest of this note goes as follows. In Section 1, I show that property (3) does not
hold for all predicate transformersS if 2′ is defined by (4). Section 2 introduces two
special kinds of predicate transformers that will be used in the sections that follow. In
Sections 3 and 4, I show that definition (5) of2′ does live up to properties (2) and (3).

1 Definition (4) is not the desired one

For the record, I show that property (3) does not always hold if2′ is defined by (5) and
the domain of2′ is the set of all predicate transformers. For use in this section, I define
two predicate transformers,N and skip, as follows:

(6)〈 ∀ F F [N.F ≡ ¬F] 〉

(7)〈 ∀ F F [skip.F ≡ F] 〉

Note thatN is not monotonic and thatskip∈ S0 . We massage property (3) in light of2′ definition (4):

〈 ∀ S,c




 c ∈ S0 F Sv c ≡ 2′.Sv c 〉

⇒ f instantiateS := N g
〈 ∀ c





 c ∈ S0 F N v c ≡ 2′.N v c 〉

= f definition of refinementg

KRML 87 -2

〈 ∀ c




 c ∈ S0 F N v c ≡ 〈∀ F F [2′.N.F ⇒ c.F] 〉〉

= f (4): definition of2′ g
〈 ∀ c





 c ∈ S0 F N v c ≡ 〈∀ F F [N.true ∧ 2.N.F ⇒ c.F] 〉〉

= f (6): definition of N g
〈 ∀ c





 c ∈ S0 F N v c ≡ 〈∀ F F [false ∧ 2.N.F ⇒ c.F] 〉〉

= f predicate calculusg
〈 ∀ c





 c ∈ S0 F N v c 〉

= f definition of refinementg
〈 ∀ c





 c ∈ S0 F 〈 ∀ F F [N.F ⇒ c.F] 〉〉

⇒ f instantiatec,F := skip, false g
[N.false ⇒ skip.false]

= f (6) and (7): definitions ofN and skip g
[true ⇒ false]

= f predicate calculusg
false

The rest of this note uses (5), not (4), as the definition of2′ .

2 Specification statements and lifted predicates

In section section, I state a few properties of two particular kinds of predicate transform-
ers: specification statements and lifted predicates.

A specification statementis a triple w:[P,Q] , where w is the set of programs vari-
ables of the state space under consideration,P is predicate on the pre-state, andQ is
a two-state predicate, that is, a relation on the pre-state and post-state (in Q , w0 and
w refer to the pre- and post-state values, respectively, of the variables). A specifica-
tion statement is defined as a predicate transformer in the following way [1]: For any
post-state predicateF ,

[(w:[P,Q]).F ≡ P ∧ 〈∀ w




 Q F F 〉[w0 := w]] (8)

Manohar and I have proved the following properties [0]:

(9)S0 = {P,Q F w:[P,Q] }

(10)C>
∧ = {Q F w:[true,Q] }

For convenience, I also define another predicate transformer: For any predicate P ,
the lifted predicate Lift.P is defined by

〈 ∀ F F [Lift.P.F ≡ P] 〉 (11)

KRML 87 -3

Lifted predicates turn out to be handy when combined with demonic choice, written.
First, we can lift definition (5) of2′ and write it in terms of predicate transformers: For
any predicate transformerS,2′.S = Lift.〈 ∃ F F S.F 〉 2.S (12)

Also, we can state the following property of specification statements:

〈 ∀ P,Q F w:[P,Q] = Lift.P w:[true,Q] 〉 (13)

which follows from the definition of the specification statement, (8). Finally, we can
prove the following nice property: For any predicateP and predicate transformerS,

Sv Lift.P ≡ [〈 ∃ F F S.F 〉 ⇒ P] (14)

The proof of (14) goes as follows:

Sv Lift.P
= f definition of refinementg

〈 ∀ F F [S.F ⇒ Lift.P.F] 〉

= f (11): definition ofLift.P g
〈 ∀ F F [S.F ⇒ P] 〉

= f interchange quantifications [] and∀ g
[〈 ∀ F F S.F ⇒ P 〉]

= f predicate calculusg
[〈 ∃ F F S.F 〉 ⇒ P]

3 Proof of property (2)

The proof of (2) is easy: For any predicate transformerS, we calculate,2′.S∈ S0

= f (12): lifted definition of2′ g
(Lift.〈 ∃ F F S.F 〉 2.S) ∈ S0

= f (0) and (10) and someQ g
(Lift.〈 ∃ F F S.F 〉 w:[true,Q]) ∈ S0

= f (13) g
w:[〈 ∃ F F S.F 〉,Q] ∈ S0

= f (9) g
true

KRML 87 -4

4 Proof of property (3)

In this section, I prove property (3). It will be profitable to start by reviewing Galois
connections and some things from Morgan’s paper.

Given two partial orders(X,≤X) and (Y,≤Y) , two functions f : X → Y and
g: Y → X are said to form aGalois connection, written gal.(f ,g) , when

〈 ∀ x,y




 x ∈ X ∧ y ∈ Y F f .x ≤Y y ≡ x ≤X g.y 〉

If gal.(f ,g) , then functionf is called thelower adjoint, and g the upper adjoint, of
the Galois connection(f ,g) .

Morgan proves a useful lemma about adjoints (labeled Lemma 6.1): For any Galois
connection(f ,g) as just described,

〈 ∀ x,y F x ≤X g.y ≡ (g◦ f).x ≤X g.y 〉 (15)

Morgan considers two partial orders (complete lattices, in fact),(T ,v) and (R,⊆),
where T denotes the set of all predicate transformers from post-states to pre-states,R denotes the set of all relations on pre- and post-states, and⊆ denotes relational
containment. Morgan defines two functionsA: T → R andA:R → T . The definition
of A is given operationally as follows: For any relationr , post-state predicateF , and
pre-statep ,

A.r.F.p ≡ 〈∀ f




 p〈r〉f F F.f 〉 (16)

Function A is defined in such a way that(A,A) forms a Galois connection: For every
relation r and predicate transformerS,

A.S⊆ r ≡ Sv A.r (17)

(As Morgan shows, such a lower adjoint does exist, and a property of Galois connections
is that if a function has a lower adjoint, it is unique.) Morgan then derives a definition
of function 2 in terms ofA and A :2 = A ◦ A (18)

I define two functionsB and B that will be shown to form a Galois connection.
First, B is defined operationally as follows: For any pre-state predicateP , relation r ,
post-state predicateF , and pre-statep ,

B.(P, r).F.p ≡ P.p ∧ 〈∀ f




 p〈r〉f F F.f 〉 (19)

We calculate,

KRML 87 -5

B.(P, r).F.p
= f (19): operational definition ofB g

P.p ∧ 〈∀ f




 p〈r〉f F F.f 〉

= f (16): operational definition ofA g
P.p ∧ A.r.F.p

This calculation establishes: For anyr , P , and F ,

[B.(P, r).F ≡ P ∧ A.r.F]

In fact, we can rewrite this property in a lifted way: For any relationr and predicateP ,

B.(P, r) = Lift.P A.r (20)

Morgan proves that the image ofA is exactly the set of universally conjunctive
predicate transformers:

{ r F A.r } = C>
∧ (21)

We wish to establish that the image ofB is exactly the set of positively conjunctive
predicate transformers:

{ r,P F B.(P, r) } = S0 (22)

Property (22) follows from (9) and the following calculation:

B.(P, r)
= f (20): lifted definition ofB g

Lift.P A.r
= f (21) and (10) and someQ ; or looked at from the other direction:

(10) and (21) and somer g
Lift.P w:[true,Q]

= f (13) g
w:[P,Q]

I now defineB , which maps predicate transformers to relation-predicate pairs: For
any predicate transformerS,

B.S = (〈 ∃ F F S.F 〉,A.S) (23)

For use later, I also define an ordering≤ on relation-predicate pairs: For any predicates
P and P′ and relationsr and r ′ ,

(P, r) ≤ (P′, r ′) ≡ [P ⇒ P′] ∧ r ⊆ r ′ (24)

KRML 87 -6

We can now prove a property aboutB , B , and 2′ , corresponding to Morgan’s
property (18) aboutA , A , and2 , namely

B ◦ B = 2′ (25)

For any predicate transformerS, we calculate,

(B ◦ B).S
= f function composition g

B.(B.S)

= f (23): definition ofB g
B.(〈 ∃ F F S.F 〉,A.S)

= f (20): lifted definition ofB g
Lift.〈 ∃ F F S.F 〉 A.(A.S)

= f (18): A ◦ A = 2 g
Lift.〈 ∃ F F S.F 〉 2.S

= f (12): lifted definition of2′ g2′.S

To prove (3), I prove that(B,B) forms a Galois connection and then, following
Morgan’s footsteps in proving (1), apply lemma (15). Let’s start by showinggal.(B,B) :
For any predicateP , relation r , and predicate transformerS, we calculate,

B.S≤ (P, r)
= f (23): definition ofB g

(〈 ∃ F F S.F 〉,A.S) ≤ (P, r)
= f (24): definition of≤ g

[〈 ∃ F F S.F 〉 ⇒ P] ∧ A.S⊆ r
= f lemma (14) g

Sv Lift.P ∧ A.S⊆ r
= f (17): gal.(A,A) g

Sv Lift.P ∧ Sv A.r
= f lifting g

Sv Lift.P A.r
= f (20): lifted definition ofB g

Sv B.(P, r)

Using lemma (15), we can now prove property (3): For any predicate transformer S,

KRML 87 -7

〈 ∀ c




 c ∈ S0 F Sv c ≡ 2′.Sv c 〉

= f (22): image ofB is S0 g
〈 ∀ P, r F Sv B.(P, r) ≡ 2′.Sv B.(P, r) 〉

= f (25): B ◦ B = 2′ g
〈 ∀ P, r F Sv B.(P, r) ≡ (B ◦ B).Sv B.(P, r) 〉

= f Morgan’s lemma (15), withf ,g := B,B , sincegal.(B,B) g
true

5 Epilogue

It is widely believed that monotonic predicate transformers have meaningful counter-
parts among computer programs, and that predicate transformers that are not mono-
tonic do not. For a monotonic predicate transformerS, the predicateS.true character-
izes those pre-states from which execution ofS will terminate. In the words of Rajit
Manohar,〈 ∃ F F S.F 〉 characterizes those pre-states from whichS “can be initiated”.
The notion of “can be initiated” applies to all predicate transformers, not justmonotonic
ones.

I have not previously seen the trick of using〈 ∃ F F S.F 〉 instead ofS.true in
order to extend an argument about monotonic predicate transformers to all predicate
transformers. An application of this trick turned out to be precisely what was required
in problem described in this note.

References

[0] K. Rustan M. Leino and Rajit Manohar. Joining specification statements.Theoreti-
cal Computer Science, December 1997. To appear.

[1] Carroll Morgan. The specification statement.ACM Transactions on Programming
Languages and Systems, 10(3):403–419, July 1988.

[2] Carroll Morgan. The cuppest capjunctive capping, and Galois. In A. W. Roscoe,
editor,A Classical Mind: Essays in Honour of C.A.R. Hoare, International Series in
Computer Science, pages 317–332. Prentice-Hall, 1994.

