KRML 87 -0

Positively capjunctive cappings, and Galois

K. Rustan M. Leino
5 January 1998

2 Digital Equipment Corporation Systems Research Center
SR " 130 Lytton Ave., Palo Alto, CA 94301, U.S.A.
o LN rust an@a. dec. com

Abstract. This note defines an operatdr which maps any predicate transformer to its least-
refined positively conjunctive predicate transformer. @pa O’ is similar to Carroll Morgan’s

O operator, which maps any predicate transformer to its dedisted universally conjunctive
predicate transformer. The proof that has the desired properties makes use of Morgan’s
results and Galois connections. The definitiondf turns out to have an interesting, and, at
least to me, novel ingredient.

O Introduction

Carroll Morgan defines a functio , which has the following properties [2]: For any
predicate transformes,

0.SecC! (0)
(VelcelCl > SCc= 0SCc) (1)

whereC| denotes the set of all universally conjunctive predicate transformerscand
is the refinement ordering on predicate transformers.

Rajit Manohar and | have the need for a function with the following proper-
ties [0]: For any predicate transform&,

0.Se & (2)
(VclceS>SCc = 0.SCc) (3)

where Sy denotes the set of all positively conjunctive predicate transformers. Paul
Gardiner suggested to us that we define functivnn terms of O as follows: For any
predicate transforme$ and predicatd-,

0’.SF = Strue A O.SF (4)

Enticed by Gardiner’s definition, we became interested in proving prope2liesd (3)
from the definition ofd’. That is the subject of this note.

As itturns out, if O’ is defined by (4), it will satisfy property (3) only for predicate
transformersS that aranonotoniqwith respect to the refinement ordering). The desired

KRML 87 -1

definition of O’ in terms of O is instead: For any predicate transforngand predicate
F,

0.SF = (3F > SF) A O.SF (5)
Note that the right-hand sides of definitions (4) and (5) are the saésiimonotonic:

Strue
= { F:=true }
(3F > SF)
= { [F = trug], soif Sis monotonic,then§F = Strue] }
(3F > Strue)
= { predicate calculus (since rangeBfis nonempty) }
Strue

This calculation shows that i is monotonic, then
[Strue = (IF > SF)]

The rest of this note goes as follows. In Section 1, | show that property (3) does not
hold for all predicate transformeiS if O’ is defined by (4). Section 2 introduces two
special kinds of predicate transformers that will be used in the sectionsthmat.f In
Sections 3 and 4, | show that definition (5) ©f does live up to properties (2) and (3).

1 Definition (4) is not the desired one

For the record, | show that property (3) does not always hold ifs defined by (5) and
the domain ofc’ is the set of all predicate transformers. For use in this section, | define
two predicate transformer$y and skip, as follows:

(VF > [N.F = =F]) (6)
(VF > [skipF = F]) (7)

Note thatN is not monotonic and thatkip € Sp. We massage property (3) in light of
0O’ definition (4):

(VSc|lceS>SCc = O.Scece)
= { instantiateS:=N }

(VclceS>NCc = ONCc)
= { definition of refinement }

KRML 87 -2

(Ve]lceSo> NCc = (VF [O.N.F = cF]))
= { (4): definition of 0" }
(VclceSy>NCEc = (VF > [Ntrue A ON.F = cF]))
= { (6): definition of N }
(Vc]lceS>NCc = (VF» [false A ON.F = cF]))
= { predicate calculus}
(VclceS>NCc)
= { definition of refinement }
(VelceSy> (VE > [NF = cF]))
= { instantiatec, F := skip false }
[N.false = skip.falsg
= { (6) and (7): definitions oN and skip }
[true = falsq
= { predicate calculus}
false

The rest of this note uses (5), not (4), as the definitionlof

2 Specification statements and lifted predicates

In section section, | state a few properties of two particular kinds of prediansform-
ers: specification statements and lifted predicates.

A specification statemer a triple w:[P, Q] , where w is the set of programs vari-
ables of the state space under considerati®ns predicate on the pre-state, aqlis
a two-state predicate, that is, a relation on the pre-state and pas{(ist&, wy, and
w refer to the pre- and post-state values, respectively, of the varjalAespecifica-
tion statement is defined as a predicate transformer in the following ¥jay-pr any
post-state predicatE ,

[W[P,QD.F = PA(YW]| Q> F)[w:=wW]] (8)
Manohar and | have proved the following properties [O]:

So = {P.Qr> w[P,Q] } 9)

Cl = {Qr> wtrue Q] } (10)

For convenience, | also define another predicate transformer: For any peeHicat
thelifted predicate LiftP is defined by

(VF > [Lift.P.F = P]) (11)

KRML 87 -3

Lifted predicates turn out to be handy when combined with demonic choice, written
First, we can lift definition (5) of2’ and write it in terms of predicate transformers: For
any predicate transformes,

0.S = Lift.(3F >~ SF) 0 O.S (12)
Also, we can state the following property of specification statements:
(VP,Q > wi[P, Q] = Lift.P U w:[true, Q]) (13)

which follows from the definition of the specification statement, (8). Fnalie can
prove the following nice property: For any predic&®eand predicate transformés,

SC Lift.P = [(FF > SF) = P] (14)
The proof of (14) goes as follows:

SC Lift.P
= { definition of refinement }
(VF > [SF = Lift.P.F])
= { (11): definition of Lift.P }
(VF > [SF = P])
= { interchange quantifications [] ard }
[(VF > SF = P)]
= { predicate calculus}
[(IF > SF) = P]

3 Proof of property (2)

The proof of (2) is easy: For any predicate transfori8ewe calculate,

0'.Se 80
= { (12): lifted definition of O’ }
(Lift.(3IF > SF)Y 0 0.9 € S
= { (0)and (10) and som® }
(Lift.(3F > SF) 0 w:[true, Q]) € So
= { (13) }
W [(IF > SF),Q] € Sp
= { O }

true

KRML 87 -4

4 Proof of property (3)

In this section, | prove property (3). It will be profitable to start by reviggvzalois
connections and some things from Morgan'’s paper.

Given two partial orders(X, <x) and (Y, <y), two functionsf:X — Y and
g:Y — X are said to form &alois connectiopwritten gal.(f, g) , when

(VX y]| XeXAyeYrs fX<yy = X=<xgy)

If gal.(f,g), then functionf is called thdower adjoint and g the upper adjoint of
the Galois connectiortf, g) .

Morgan proves a useful lemma about adjoints (labeled Lemma 6.1): For any Galois
connection(f, g) as just described,

(VX,y> X<x0y = (gof).x=<x0y) (15)

Morgan considers two partial orders (complete lattices, in f&@@t), =) and (R, ©),
where 7 denotes the set of all predicate transformers from post-states to ps;stat
R denotes the set of all relations on pre- and post-states,@ndenotes relational
containment. Morgan defines two functioAs7 — R andA: R — T . The definition
of A is given operationally as follows: For any relation post-state predicaté , and
pre-statep,

Ar.Fp = (Vf | pinf > F.f) (16)

Function A is defined in such a way tha®, A) forms a Galois connection: For every
relationr and predicate transformé,

ASCr = SCAr (17)

(As Morgan shows, such a lower adjoint does exist, and a property of Galois camsecti
is that if a function has a lower adjoint, it is unique.) Morgan then derives a tiefini

of function O in terms of A and A:
O = /K\O A (18)

| define two functionsB and B that will be shown to form a Galois connection.
First, B is defined operationally as follows: For any pre-state predi€ateslationr ,
post-state predicatE , and pre-state,

B.(P,r).F.p = PpA (Vf | pinf > F.f) (19)

We calculate,

KRML 87 -5

B.(P,r).F.p

= { (19): operational definition oB }
Pp A (VT] pin)f = F.T)

= { (16): operational definition oA }
P.p A Ar.F.p

This calculation establishes: For any P, andF,
[B.(P,r).F = P A Ar.F]

In fact, we can rewrite this property in a lifted way: For any relatroand predicateP,
B.(P,r) = Lift.P 0 Ar (20)

Morgan proves that the image & is exactly the set of universally conjunctive
predicate transformers:

{reAr} =l (21)

We wish to establish that the image Bf is exactly the set of positively conjunctive
predicate transformers:

{r,P>B.(P,1} = So (22)
Property (22) follows from (9) and the following calculation:
B.(P,r)
= { (20): lifted definition of B}
Lift.P 0 Ar

= { (21) and (10) and som@®; or looked at from the other direction:
(10) and (21) and some }
Lift.P [w:[true, Q]
= { 13}
w:[P, Q]

| now define B, which maps predicate transformers to relation-predicate pairs: For
any predicate transformes,

B.S = ((3F > SF),AS (23)

For use later, | also define an orderirgon relation-predicate pairs: For any predicates
P and P" and relations andr’,

P.rn=<P,r)y=[P=PlAarcr (24)

KRML 87 -6

We can now prove a property aboBt, B, and O’, corresponding to Morgan’s

property (18) aboufA, A, and O, namely
BoB = @

For any predicate transform&, we calculate,

(BoB).S

= { function composition }
B.(B.S

= { (23): definition of B }
B.((3F > SF),A.S

= { (20): lifted definition of B}
Lift.(3F > SF) 1 A.(AS

= { (18) /K\OA = 0O }
Lift.(3F ~ SF) [0.8

= { (12): lifted definition of 0’ }
0.S

(25)

To prove (3), | prove that(B, B) forms a Galois connection and then, following
Morgan’s footsteps in proving (1), apply lemma (15). Let’s start by shovgalyB, B) :

For any predicatd®, relationr , and predicate transform&;, we calculate,

BS=(P,n
= { (23): definition ofB }
(3IF > SF), A9 < (P,1)
= { (24): definitionof < }
[(3F > SF) = P] A ASCr
= { lemma (14) }
SC Lift.P A ASCr
= { A7):gal.AA }
SC Lift.P A SC Ar
= { lifting }
SC Lift.P [Ar
= { (20): lifted definition of B}
Sc B.(P,1)

Using lemma (15), we can now prove property (3): For any predicate transf@me

KRML 87 -7

(VclceS>SCc = O.SCec)
— { (22):image ofB is Sy }
(VP,r = SCB.(P,r) = O’.SCB.(P,1))
= { (25):BoB = O’ }
(VP,r > SCB.(P,r) = (BoB).SCB.(P,1))
= { Morgan’s lemma (15), witlf, g := B, B, sincegal.(B,B) }
true

5 Epilogue

It is widely believed that monotonic predicate transformers have meaningfulereunt
parts among computer programs, and that predicate transformers that are not mono-
tonic do not. For a monotonic predicate transforrethe predicateStrue character-
izes those pre-states from which executionSofvill terminate. In the words of Rajit
Manohar,(3F > SF) characterizes those pre-states from whttan be initiated”.
The notion of “can be initiated” applies to all predicate transformers, noimosiotonic
ones.

| have not previously seen the trick of usin@F >~ SF) instead of Strue in
order to extend an argument about monotonic predicate transformers to all predicate
transformers. An application of this trick turned out to be precisely whatnequired
in problem described in this note.

References

[0] K. Rustan M. Leino and Rajit Manohar. Joining specification statemdihsoreti-
cal Computer Scienc®ecember 1997. To appear.

[1] Carroll Morgan. The specification stateme®CM Transactions on Programming
Languages and Systeni®(3):403—-419, July 1988.

[2] Carroll Morgan. The cuppest capjunctive capping, and Galois. In A. W. Roscoe,
editor,A Classical Mind: Essays in Honour of C.A.R. Hodmernational Series in
Computer Science, pages 317-332. Prentice-Hall, 1994.

