The Golden Rule of Positive Integers ## K. Rustan M. Leino and Lyle Ramshaw 11 October 1999 Compaq Systems Research Center 130 Lytton Ave., Palo Alto, CA 94301, U.S.A. {rustan,ramshaw}@pa.dec.com Consider the well-known property, stated for any positive integers a and b, that $$a \gcd b \cdot a \operatorname{lcm} b = a \cdot b \tag{0}$$ where **gcd** and **lcm** denote greatest common divisor and least common multiple, respectively. To prove this property, we think of positive integers in terms of their prime factorizations. We define a function F from positive integers to functions from the primes to the naturals: for any positive integer x, function F satisfies $$x = (\cdot p \mid p \text{ is prime } :: p^{F.x.p})$$ (1) where we have used a left-associative infix dot to denote function application. The right-hand side of this equation denotes the product, for all primes p, of p raised to the power of F.x.p. In other words, F.x.p gives the exponent of prime p in the prime factorization of x. Note that F is one-to-one, since F.x determines x by equation (1). (The fact that F exists follows from the existence of a prime number factorization of every positive integer.) We will use common operators like + on functions by defining them as pointwise extensions of the corresponding operations on the range of the functions. That is, for integer functions v and w, v+w denotes the integer function whose values are the pointwise sums of v and w: $$(\forall p :: (v+w).p = v.p + w.p)$$ We will rely on context to distinguish between operating on functions and operating on values. Now for the proof of the well-known property (0). For any positive integers a and b, $$a \operatorname{gcd} b \cdot a \operatorname{lcm} b = a \cdot b$$ $$= \left\{ \begin{array}{l} \text{by definition of } F, (x = y) = (F.x = F.y) \end{array} \right\}$$ $$F.(a \operatorname{gcd} b \cdot a \operatorname{lcm} b) = F.(a \cdot b)$$ $$= \left\{ \begin{array}{l} \text{distribute } F \text{ over } \cdot : F.(x \cdot y) = F.x + F.y \end{array} \right\}$$ $$F.(a \operatorname{gcd} b) + F.(a \operatorname{lcm} b) = F.a + F.b$$ $$= \left\{ \begin{array}{l} \text{distribute } F \text{ over } \operatorname{gcd} \text{ and } \operatorname{lcm} : F.(x \operatorname{gcd} y) = F.x \operatorname{min} F.y \\ \text{and } F.(x \operatorname{lcm} y) = F.x \operatorname{max} F.y \end{array} \right\}$$ $$F.a \operatorname{min} F.b + F.a \operatorname{max} F.b = F.a + F.b$$ $$= \left\{ \begin{array}{l} \text{property of } \operatorname{min} \text{ and } \operatorname{max} \end{array} \right\}$$ The penultimate line, $$F.a \min F.b + F.a \max F.b = F.a + F.b \tag{2}$$ is similar in structure to a beautiful, but less well-known, equation from predicate calculus known as the Golden Rule: for any booleans X and Y, $$X \wedge Y \equiv X \vee Y \equiv X \equiv Y \tag{3}$$ To understand what this rule says, one needs to remember that equality on booleans is associative. Thus, one may choose to read equation (3) as $$(X \wedge Y \equiv X \vee Y) \equiv (X \equiv Y)$$ We use the symbol \equiv rather than = to remind ourselves of this associativity. So what makes the Golden Rule similar in structure to equation (2)? The operations \land and \lor are the meet and join operations, respectively, of the lattice of booleans. In the total ordering of integers, the meet and join operations are **min** and **max**, respectively. But the Golden Rule doesn't look entirely like equation (2), because where equation (2) uses +, the Golden Rule uses \equiv . We will now show how to rewrite the Golden Rule into an equivalent form that will make it look much more like equation (2). In predicate calculus, not only does equality, \equiv , associate with itself, but it also associates with discrepance, $\not\equiv$. Discrepance, which is defined for any booleans X and Y by $$(X \not\equiv Y) \equiv (\neg X \equiv Y)$$ is perhaps better known as exclusive or, that is, xor. Because \equiv and \neq associate, the definition of \equiv can equivalently be written as $$X \not\equiv Y \equiv \neg X \equiv Y$$ Because negation is an involution, that is, negation is its own inverse, \equiv and $\not\equiv$ have another useful property: in any expression whose top-level operators are \equiv and $\not\equiv$, one can change any \equiv into a $\not\equiv$ and change any $\not\equiv$ into an \equiv , provided the number of such changes is even. For example, here are four equivalent ways of denoting the same thing: $$\begin{array}{cccccc} W & \equiv & X & \equiv & Y & \equiv & Z \\ W & \not\equiv & X & \not\equiv & Y & \equiv & Z \\ W & \not\equiv & X & \equiv & Y & \not\equiv & Z \\ W & \equiv & X & \not\equiv & Y & \not\equiv & Z \end{array}$$ Since xor can be construed as addition modulo 2, we are now done: the Golden Rule can be stated as $$X \wedge Y \not\equiv X \vee Y \equiv X \not\equiv Y$$ using the same structure as equation (2). Thus, if the equation for booleans is known by a name as fancy as the Golden Rule, perhaps the well-known property that links greatest common divisors and least common multiples should be known as the Golden Rule of Positive Integers.