
 SN0-1

Using Dijkstra-Gries formal method to refine an informal program

Srinivas Nayak

Abstract

In this note, a detailed step-by-step refinement of an informally

developed bidirectional bubble sort algorithm is presented. A less

rigorous formal approach has been followed to refine an already

developed algorithm to a provable one. Proofs of correctness that have

guided the refinement steps have been provided along with the

intermediate versions of the algorithm. It is concluded that, Dijkstra-

Gries formal method can be easily used to refine an already developed

program to a provable one.

Introduction

If someone meets a software developer, in introduction, he will

obviously ask two obvious questions, "What do you do?" and "How do you

do it?" I think, any software developer, with a little hesitation, will

keep his answers simple, "modify existing code" and "in ad-hoc manner".

If readers do not agree to both of my answers, it is a good sign! But I

believe, for most of the developers, though they do not say it loud, in

reality, they do the same. To my notice, scope for developing a new code

from scratch is very less in software industries. Daily job of a

software developer includes (a) refining the existing code when a bug is

found, (b) copying necessary lines of source code from an already

developed system (c) modifying existing source code to suit a new

requirement. Popular terms for these activities are 'bug fixing',

'porting' and 'enhancement' respectively. No doubt, much time is spent

playing around with existing code.

Saying this, it remains to see, how this job is accomplished. Large

parts of the software developer community do their job in an ad-hoc

manner. Since last forty years we have witnessed methodologies that

enhance our ability to develop a program correctly and prove its

correctness. These methodologies are called formal methodologies as

opposed to ad-hoc method of developing program. Needless to say, ad-hoc

method of developing program is still dominant in industries despite we

have other better methods. In essence, in a typical software industry,

everyday work practice includes modification or refinement of an

existing code developed in ad-hoc manner.

It is been around a year I came across the formal method of developing

programs in the works of Dijkstra and Gries (hereafter referred simply

as formal method). One question always comes to my mind, can I apply

this in my daily work? We have many examples in books, which show how to

develop a program formally from scratch with the goal in mind and a

proof of correctness guiding the development. But what about refining an

existing code? When I deal with a piece of code that is already

developed in ad-hoc manner, can I use this methodology to refine them?

Searching an answer to this, I thought of applying the formal method to

refine an already developed program, which I have developed in ad-hoc

way (as I usually do!). My experience through this little experiment has

lead to this note which describes in detail the steps carried out in

refining a sorting algorithm. I have devoted separate sections for each

step I have followed in refining my algorithm. Each section starts with

finding a construct in the program to refine, then describes application

of formal method to find a correct construct, discusses verification of

 SN0-2

new construct against the correctness criteria and finally presents a

proof of correctness for the algorithm developed till then.

A sorting algorithm

While I was going through the quick sort algorithm, I planned to design

an algorithm that is similar to quick sort but with a little different

idea. In quick sort algorithm, we pick an arbitrary element (pivot),

proceed to place the pivot in its actual position in the list (position

where the element would be, had the given list been sorted) and then, we

apply quick sort recursively to both the sub-lists on two sides of the

pivot. Essentially, here we choose only one element as pivot and we

continue till we place it in its actual position and then, since the

pivot is in proper place for the sorted list, we worry about all other

elements rather than the pivot.

I wanted to make two changes to the above idea. Firstly, I will not try

to place my chosen element in its actual position in one iteration. I am

satisfied, if in a single iteration, my chosen element makes some

progress in moving towards its actual position. Secondly, I decided not

to choose any single element as pivot, so that, in a single iteration, I

may try to move any number of elements towards their actual positions.

With this idea, I am sure that, in every iteration I am making some

progress towards the completion of sorting and for the list to be

totally sorted, I may go on many such iterations.

My algorithm

I quickly wrote down the first version of my algorithm which maps to my

idea outlined above.

Version 0:

//sorts an array of n+1 elements in ascending order.

my_sorting_algorithm()

{

 u := 0;

 d := n;

 while(1)

 {

 if(sorted) exit;

 // Added after I debug the program with computer

 if(u=n /\ d=0)

 {

 u := 0;

 d := n;

 }

 // L-R Loop

 p := u;

 u := u+1;

 while(u<n /\ a[p]>a[u])

 {

 swap(a[p], a[u]);

 p := p+1;

 u := u+1;

 }

 SN0-3

 // R-L Loop

 q := d;

 d := d-1;

 while(d>0 /\ a[q]<a[d])

 {

 swap(a[q], a[d]);

 q := q-1;

 d := d-1;

 }

 }

}

I hope a little explanation to this algorithm here will be in order.

This algorithm sorts an array a of n+1 elements in ascending order. I

have chosen n+1 elements in my array, only because I can refer to the

last element of my array simply as a[n] rather than a[n-1].

In L-R Loop, p points to my chosen element and u points to its next

element. Variable u will hold values from range 0 to n. Whenever I found

my chosen element (pointed by p) greater than its right neighbor

(pointed by u), I swap them. Now, by increasing p and u, I again pick my

earlier chosen element. By repeating the same compare and swap strategy,

I keep moving my chosen element towards its actual position. If I can't

carry my chosen element further, I choose its next element and proceed.

The same plan has been devised for the R-L Loop. Once I complete my L-R

Loop and R-L Loop, I am sure that some progress has been made towards

sorting, that is, the array is now somewhat sorted. I need to repeat the

same until my array is fully sorted. For checking whether the array is

sorted or not, I simply employed a small subroutine which compares each

pair of elements in the array to decide, if the array is sorted or not.

When the subroutine returns true, the array is sorted and I exit the

loop. In my algorithm, I have used 'sorted' to denote such a device that

lets me know when the array is sorted.

[Note] At a first look, use of a subroutine to check the sortedness

seems awkward. When I explained this algorithm to my friend, immediately

he came up with an idea to use a flag instead of subroutine. The flag,

which is initially true, shall be changed to false, in case we enter any

of the inner loops, denoting the array is still not sorted. We will

check the flag after exiting from the second inner loop. If it is still

true, we will exit from the outer loop, otherwise we will continue

executing.

Initially, this scheme looked promising. Little after, when I analyzed

our new scheme thoroughly, I found that it will not work. Why? Readers

can use the array {1, 2, 5, 3, 4} to see why this scheme doesn't work.

[End of the Note]

So far so good. I am happy that my algorithm maps exactly to my idea,

but how do I check, if my algorithm is correct? I immediately wrote a

program for it and sat in front of my computer. As usual, it failed. It

was an infinite loop! I put debug statements all over the body of my

program and finally I found that I am not re-initializing the variables

u and d after they reached their maximum and minimum values

respectively. I should continue picking elements and pushing them

towards their actual positions and for that reason I have to re-

initialize u to 0 and d to n. The same needs to be done as long as the

array is not sorted.

 SN0-4

I was satisfied that my algorithm was able to sort all the lists which I

have given it as input. However, the correctness of the algorithm can

not be judged by a couple of test runs. Now I was looking for a proof

which can convince myself --and also my friends-- that my algorithm is

correct. I was excited that I have discovered a variant of quick sort

(because, the idea was born while I was reading quick sort!) and its

proof was crucial for me to convince my friends that I have discovered

an algorithm that really sorts! I started refining my algorithm for its

provability. My sincere thanks to Dr. David Gries for pointing out that

my algorithm is a variant of bubble sort and not of quick sort.

Formalizing inner loops

Lets clearly visualize the problem at hand. Sorting in ascending order

can be seen as a process of finding a configuration (of the array

elements) which is lexicographically smallest of all the other possible

configurations. We keep values of all the elements unchanged while

sorting. This definition is more formal than the common idea about

sorting.

In refining my algorithm, I wanted to focus on the inner loops first. To

formalize and reason about the loops I need to find Hoare triples for

them. Keeping other parts of the algorithm unchanged, I started refining

the first inner loop (L-R Loop). When we look a bit deep into the

sorting process, we find that, just before the inner loops, the

arrangement of elements inside the array is changed where as the initial

values of array elements remains unchanged. Hence the precondition for

the L-R Loop can be:

Q1: A1=perm(a,A).

This states that, considering array A[0:n] as the initial configuration

of values of the given array a[0:n], A1 is a permutation of A.

Now I have to choose the postcondition for the L-R loop. Since I expect

my loop to make some progress towards sorting, the postcondition is

immediate:

R1: A1=perm(a,A) /\ A1<=A.

The second clause states that the new configuration A1 is

lexicographically smaller than or equal to the initial configuration A.

The next task was to find the invariant for the L-R Loop; a assertion

that is true all throughout the loop execution as well as before the

loop starts and after the loop execution ends. I had chosen my loop

condition to be

B1: (u<n /\ a[p]>a[u]).

With a hope that this condition may give me some insight on finding the

invariant, I wanted to have a close look at it. I found two things:

1. First clause u<n remains true whenever the loop is entered. At the

end of the loop, u becomes same as n. So, the predicate u<=n remains

true throughout the loop execution.

2. When the second clause a[p]>a[u] is true, we swap a[p] and a[u]. This

only changes the configuration of the array a and the new configuration

A1 is just a permutation of the original configuration A. Hence

 SN0-5

A1=perm(a,A) is true when the loop is executed. When the loop ends or

the clause a[p]>a[u] is false, A1=perm(a,A) still holds true.

Another beautiful observation surfaces itself immediately from the

second one.

3. We can see that after the swapping is done, the bigger element shifts

to right and smaller element shifts to left. This causes the new

configuration (a[u],a[p]) to be lexicographically smaller than the old

configuration (a[p],a[u]). This makes A1<A. In case a[p] and a[u] are

same, A1 equals A. So A1<=A is true as long as the loop is executing.

A1<=A is true also when the loop starts and ends.

And finally the assignment statements that increments the values of the

variable p and u gives us:

4. p is always less than u whenever the loop starts, gets executed and

ends.

Now combining the observations from 1 to 4 I can frame my invariant as:

P1: u<=n /\ p<u /\ A1=perm(a,A) /\ A1<=A.

The last thing I have to find is the bound function. In L-R Loop, we

operate on the array going from start to end of it till u becomes n. So

I could choose my bound function to be:

t1: n-u.

When the loop ends, t1 is 0 which is as desired. Following exactly the

similar steps, I find Q2, R2, P2 and t2 for the second inner loop (R-L

Loop). With all the above findings, my next version of algorithm looks

as follows.

Version 1:

//sorts an array of n+1 elements in ascending order.

bidirectional_bubble_sort()

{

 // a[0:n] = A[0:n]

 u := 0;

 d := n;

 while(1)

 {

 if (sorted) exit;

 if(u=n /\ d=0)

 {

 u := 0;

 d := n;

 }

 // Bubble-Up Loop

 p := u;

 u := u+1;

 // precondition Q1 : A1=perm(a,A)

 // invariant P1 : u<=n /\ p<u /\ A1=perm(a,A) /\ A1<=A

 // bound function t1 : n-u

 SN0-6

 while(u<n /\ a[p]>a[u])

 {

 swap(a[p], a[u]);

 p := p+1;

 u := u+1;

 }

 // postcondition R1 : A1=perm(a,A) /\ A1<=A

 // Bubble-Down Loop

 q := d;

 d := d-1;

 // precondition Q2 : A2=perm(a,A)

 // invariant P2 : d>=0 /\ q>d /\ A2=perm(a,A) /\ A2<=A1

 // bound function t2 : d

 while(d>0 /\ a[q]<a[d])

 {

 swap(a[q], a[d]);

 q := q-1;

 d := d-1;

 }

 // postcondition R2 : A2=perm(a,A) /\ A2<=A1

 }

}

To see the correctness of loops, we shall verify whether our loops

satisfy the following criteria.

A loop with precondition Q, postcondition R, invariant P, loop condition

B and bound function t is correct, when

1. Invariant P is true before execution of the loop begins.

2. Invariant P remains valid after execution of the loop body.

3. P /\ ~B => R, i.e. desired result is obtained after the loop

execution terminated.

4. P /\ B => t>0, i.e. number of loop iteration is bounded

5. Each loop iteration decreases bound function t.

By initializing u to 0, initializing p to value of u and incrementing u,

we reach a state just before the Bubble-Up loop that satisfies the first

criterion. Verification of second criterion is also easy. Inside the

Bubble-Up loop, we only swap two elements of the array, that will leave

the array as a permutation of the earlier configuration and incrementing

p and u will satisfy the clause p<u. This shows that the second

criterion is met.

According to the third criterion, loop invariant together with loop

termination condition shall provide us the desired result. Fortunately,

here in this case, our loop invariant is stronger than the

postcondition, and since the loop invariant remains valid after the loop

exits, we are sure that postcondition remains true at any cost.

When loop condition is true, we can see that, u is less than n. This

implies that bound function n-u is a finite number and greater than 0.

This shows that the Bubble up loop satisfies the forth criterion of

correctness. Finally, we could see that at each iteration, we decrement

the value of u inside the loop body. This satisfies the last criterion.

I hope, the convincing proof laid out above shall now allow us to say

that the above algorithm is correct.

Even though the current version of algorithm has no logical refinement

over the earlier version, it is more formal which allows us to prove its

 SN0-7

correctness and there by can serve as a stronger base for our further

refinements.

Refinement of formal version

Let’s now look at the formal version of the algorithm for some

refinements. We will again pick up the inner loops and try to find if we

could refine them further. We see two immediate improvements.

1. Our bound function in case of the Bubble-up loop is only a promising

one. In the sense, it just assures the loop to iterate only a finite

number of times. But truly, the loop may terminate much before the bound

function reaches its lower boundary. In case we have a non-sorted array

given (this is true often!), as soon as we have two elements that

satisfy a[p]>a[u], the loop terminates. This shows that our loop really

does not make a single pass of element-checking from begriming to end of

the array, rather it terminates much before. This can be rectified if we

deploy the first clause of B1 as our loop condition and the second

clause as the condition for swapping inside the loop.

As a further improvement, following the best practice, we could make our

loop condition a weakest one, u#n. Our new loop will look like as

follows.

while(u # n)

{

 if (a[p]>a[u]) -> swap(a[p], a[u]) fi

 p := p+1;

 u := u+1;

}

We could weaken our loop invariant to remove the clause u<=n from it,

which has already taken the role of loop condition. Still, our loop

condition together with the invariant implies the post condition.

The similar we can do for the Bubble-down loop.

2. As another improvement, we could avoid the unnecessary assignment

statements inside and outside of the outer loop. Since our loop

condition has been changed, we could see that, when the loop terminates,

u and d has value n and 0 respectively. This helps us removing the

reinitialization of the variables and as a replacement; we could always

initialize the variables u and d inside the outer loop. This again helps

us to remove the initialization outside the outer loop. Now our new

algorithm will look like as follows.

bidirectional_bubble_sort()

{

 // a[0:n] = A[0:n]

 while(1)

 {

 if (sorted) exit;

 u := 0;

 d := n;

 // Bubble-Up Loop

 p := u;

 u := u+1;

 ...

 SN0-8

 // Bubble-Down Loop

 q := d;

 d := d-1;

 ...

 }

}

As a further enhancement, if we like, we can club the assignments u :=

0; p := u; u := u+1; together to make a single multiple assignment

statement p,u := 0,1; and club the assignments d := n; q := d; d := d-1;

together to make another single multiple assignment statement q,d :=

n,n-1;.

Please note that, we could do so, because we never change the value of d

till we begin the Bubble-down loop.

With these improvements, our next version of the algorithm will be as

given below.

Version 2:

//sorts an array of n+1 elements in ascending order.

bidirectional_bubble_sort()

{

 // a[0:n] = A[0:n]

 while(1)

 {

 if (sorted) exit;

 // Bubble-Up Loop

 p,u := 0,1;

 // precondition Q1 : A1=perm(a,A)

 // invariant P1 : p<u /\ A1=perm(a,A) /\ A1<=A

 // bound function t1 : n-u

 while(u # n)

 {

 if (a[p]>a[u]) -> swap(a[p], a[u]) fi

 p := p+1;

 u := u+1;

 }

 // postcondition R1 : A1=perm(a,A) /\ A1<=A

 // Bubble-Down Loop

 q,d := n,n-1;

 // precondition Q2 : A2=perm(a,A)

 // invariant P2 : q>d /\ A2=perm(a,A) /\ A2<=A1

 // bound function t2 : d

 while(d # 0)

 {

 if (a[q]<a[d]) -> swap(a[q], a[d]) fi

 q := q-1;

 d := d-1;

 }

 // postcondition R2 : A2=perm(a,A) /\ A2<=A1

 }

}

 SN0-9

Removal of unnecessary variables

Although our current version of algorithm is simple, still we have

further scope to make it simpler. A close observation reveals that, we

use four variable in our algorithm out of which two are used only to

keep track of the neighboring element. For instance, in Bubble-Up loop p

and u keeps track of two neighboring elements from which we could retire

variable p, since we can represent the next element of an element say

a[u], just by specifying a[u+1]. This allows us to remove both the

variables p and q from our algorithm. We initialize u and d to 0 and n

respectively. We specify the next element of a[u] as a[u+1] and previous

element of a[d] as a[d-1].

This improvement gives us another opportunity to simplify our loop

invariants to become

P1: A1=perm(a,A) /\ A1<=A

P2: A2=perm(a,A) /\ A2<=A1.

With this improvement our algorithm takes the form as below.

Version 3:

//sorts an array a[0:n] in ascending order.

bidirectional_bubble_sort()

{

 // a[0:n] = A[0:n]

 while(1)

 {

 if (sorted) exit;

 //Bubble-Up Loop

 u := 0;

 // precondition Q1 : A1=perm(a,A)

 // invariant P1 : A1=perm(a,A) /\ A1<=A

 // bound function t1 : n-u

 while(u # n)

 {

 if (a[u]>a[u+1]) -> swap(a[u], a[u+1]) fi

 u := u+1;

 }

 // postcondition R1 : A1=perm(a,A) /\ A1<=A

 //Bubble-Down Loop

 d := n;

 // precondition Q2 : A2=perm(a,A)

 // invariant P2 : A2=perm(a,A) /\ A2<=A1

 // bound function t2 : d

 while(d # 0)

 {

 if (a[d-1]<a[d]) -> swap(a[d-1], a[d]) fi

 d := d-1;

 }

 // postcondition R2 : A2=perm(a,A) /\ A2<=A1

 }

}

 SN0-10

Formalizing outer loop

Let us now turn our attention to the outer loop. In the current version

of our algorithm, our outer loop iterates forever. By saying this, I am

emphasizing the nature of the loop condition ('true') which is never

false to stop the loop. But we want the loop to stop when our list is

sorted. To this end, we have provided an if-statement at beginning of

the loop which stops the loop whenever 'sorted' (implemented currently

as a subroutine) is true.

To start formalizing our outer loop and to keep our formalization

simple, let us ask ourselves two simple questions, do we really need a

subroutine to check the sortedness? Can't a simple variable do the job?

In our current version of algorithm, we have still kept 'sorted' as an

abstract condition. To have a complete implementation, I had used a

subroutine to satisfy the need. At any rate, we are free to choose a

different implementation if we like to do so. Since a subroutine will be

heavier, let’s look for some other options. Keeping the same meaning of

our abstract notion, it will not be wrong if we consider 'sorted' as a

boolean variable whose job is to inform us whether the given list is

sorted or not. For the sake of completeness, let's make it explicit that

when the list is sorted, 'sorted' shall have the value 'true' and when

the list is not sorted, 'false'. Initially 'sorted' can have a value

'false' to denote that we assume the given list is not sorted. We will

change its value to 'true' when we find the given list sorted. It is

easy to see that, we can now employ a suitable form of 'sorted' as the

condition for our outer while loop. This immediately removes foreverness

from our loop structure, makes program simple by removing the extra if

condition inside while loop and still satisfies all our needs.

With this idea in mind, let’s specify precondition and postcondition for

the outer loop formally. Our precondition is nothing but,

Q0: a[0:n] = A[0:n]

which means, the initial configuration of elements in the given array is

denoted by the array A whose elements are the initial values of a's

elements.

As we know, we have to sort the given list without changing its content

and as we said earlier, our helping variable 'sorted' shall inform us

when we have completed sorting. So our post condition may be

R0: perm(a, A) /\ (sorted => a[0..n] is in ascending order).

We need not have to search for the invariant our loop. We know, our

array content shall not be changed when the loop executes. So we can

have the following invariant.

P0: perm(a, A).

And what could be the loop condition? As we know, our loop to be

correct, P /\ ~B => R should hold. From this we get the loop condition,

B0: ~sorted

which says, the loop shall run, until the list is unsorted and shall

stop as soon as the list is sorted.

Now we have to find our bound function. We can see that, whenever we

have our list unsorted, we need to swap elements to bring it back in

 SN0-11

order. How many such inversions (swapping of elements) will finally

bring our list sorted? Let us hope that it will be a finite number,

since our list is finite. But just saying this is not enough. If we

examine carefully, we find that we treat the process of ascending order

sorting as a process of finding a configuration (of elements) which is

lexicographically smallest among all the configurations that might

exist. With each inversion we bring up a configuration that is

lexicographically smaller than the previous configuration. Since the

number of configuration for a finite number of elements is finite, the

number of steps to find the smallest configuration is also finite. It

seems that 'number of inversions' has a upper bound and can be used as

bound function of our outer loop if the loop body doesn't bring up a new

configuration that is greater than the previous one.

The bound function must satisfy the last two criteria of loop

correctness which we have followed in the section "Formalizing inner

loops". If we carefully check the validity of proposed bound function --

number of inversions-- against the forth criterion, we can see that, P

/\ B => t>0 may not hold for some case. Which case it fails?

If the input array is already sorted, number of inversions needed to

sort the array is zero and so P /\ B => t>0 is false. We can observe,

initialization of 'sorted' to a 'false' value makes the antecedent true

in this case. One may complain that this initialization is not correct

in case the given array is already sorted. By initializing 'sorted' to

'false' before the loop, we do not declare that the given array is

unsorted. As we said earlier, this only denotes our assumption about the

sortedness of array which we confirm after processing the whole array at

least once. This shows, our proposed bound function shall be of no help,

because it will not allow us an extra iteration of the loop which we use

to check and confirm sortedness of the given array irrespective of

whether it is initially sorted or not.

We may think of a different scheme for our bound function where it is

expressed as an ordered pair. A promising bound function for our need

could be an ordered pair (~sorted, number of inversions). As with the

case ordered pairs, the decreasing order of values of our bound function

will be (true,n), (true, n-1), (true, n-2),..., (true, 0), (false, 0).

It is easy to find that this allows us an extra iteration for confirming

the sortedness after number of inversions becomes zero, i.e. all the

elements are sorted. With the bound function

t0: (~sorted, number of inversions in a[0..n])

we can see that P /\ B => t>0 always holds because when B is true, value

of t is (true, 0) and still has not reached its lowest boundary (false,

0). Moreover, each iteration of our outer loop will decrease t because,

in an iteration we either find a new configuration that is smaller than

the previous, there by decreasing the number of inversions needed

further or we change the value of 'sorted' from false to true, there by

effectively decreasing the value of ~sorted from true to false. This

satisfies the last two criteria for loop correctness.

With this, the structure of our outer loop looks as follows.

boolean sorted := false;

// precondition Q0 : a[0:n] = A[0:n]

// invariant P0 : perm(a, A)

// bound function t0 : (~sorted, number of inversions in a[0..n])

 SN0-12

while(~sorted)

{

 //Bubble-Up Loop

 ...

 //Bubble-Down Loop

 ...

}

// postcondition R0 : perm(a, A) /\ (sorted => a[0..n] is in ascending

order.

Determining the sortedness

The remaining task is to assign 'sorted' an appropriate value according

to the sortedness of our array. To know if our list is sorted, we need

to (at least once) compare each neighboring elements occurring in the

list to check the sortedness. If we find, at any time, two consecutive

elements are not in order, we may declare that the array is not sorted.

If we see our algorithm, both the inner loops check the whole array with

an additional swapping in case they find any two elements unsorted. So,

hopefully we can use them to determining whether our loop is sorted or

not. For this, we may assign 'sorted' a value 'true' just before the

second loop and if in case the inside if condition executes, we may

assign a value 'false' to 'sorted' denoting the unsortedness.

We need to change the postcondition of Bubble-Down loop to show the fact

that this loop determines the sortedness of array assigning proper

values to 'sorted'. The new post condition may look like

R2: A2=perm(a,A) /\ A2<=A1 /\ (sorted => a[0..n] is sorted).

And accordingly our new invariant shall be

P2: A2=perm(a,A) /\ A2<=A1 /\ (sorted => a[d..n] is sorted).

[Note that the consequence of last clause in the invariant is 'a[d..n]

is sorted' as opposed to the consequence of last clause in the

postcondition which is 'a[0..n] is sorted']

We shall be able to show the correctness of the Bubble-Down loop which

we just modified for a new postcondition. We can verify the correctness

criteria against this loop. We can easily show that criterion 1 is met,

since d has a value n before the loop starts. Criterion 2 is met

because, in case the if-statement is executed, we have a 'false' value

for 'sorted' and since 'false' implies any consequence, P2 remains

valid. We can see that when d becomes 0, R2 is implied from P2, because

we just need to place 0 for d in P2. Here we satisfy the criterion 3.

Since our bound function of the Bubble-Down loop d is not equal to zero

at the beginning of the loop, number of loop iterations is bounded; this

satisfies criterion 4. Finally, Bubble-Down loop decrease the bound

function d by one on each iteration. This satisfies our criterion 5.

Keeping the Bubble-Up loop untouched and making changes to Bubble-Down

Loop, our final version of sorting algorithm looks as follows.

Version 4:

//sorts an array of n+1 elements in ascending order.

bidirectional_bubble_sort()

{

 boolean sorted := false;

 // precondition Q0 : a[0:n]=A[0:n]

 SN0-13

 // invariant P0 : perm(a, A)

 // bound function t0 : (~sorted, number of inversions in a[0..n])

 while(~sorted)

 {

 //Bubble-Up Loop

 u := 0;

 // precondition Q1 : A1=perm(a,A)

 // invariant P1 : A1=perm(a,A) /\ A1<=A

 // bound function t1 : n-u

 while(u # n)

 {

 if (a[u]>a[u+1])

 {

 swap(a[u], a[u+1]);

 }

 u := u+1;

 }

 // postcondition R1 : A1=perm(a,A) /\ A1<=A

 //Bubble-Down Loop

 d := n;

 sorted := true;

 // precondition Q2 : A2=perm(a,A)

 // invariant P2 : A2=perm(a,A) /\ A2<=A1 /\ (sorted =>

a[d..n] is sorted)

 // bound function t2 : d

 while(d # 0)

 {

 if (a[d-1]<a[d])

 {

 swap(a[d-1], a[d]);

 sorted := false;

 }

 d := d-1;

 }

 // postcondition R2 : A2=perm(a,A) /\ A2<=A1 /\ (sorted =>

a[0..n] is sorted)

 }

 // postcondition R0 : perm(a, A) /\ (sorted => a[0..n] is in

ascending order

}

Here we shall show the correctness of outer loop and hence of the whole

program. We can say, our program correct if our outer loop satisfies the

above five criteria against which earlier we have checked the other

loops. We can see that our loop invariant P0 is valid before the outer

loop starts. This is in accordance with our first criterion for

correctness. Second criterion demands us to show that invariant P0

remains valid after execution of loop body. This criterion is met,

because we only perform swap operations in the loop which always leaves

array a to be a permutation of its initial configuration A. According to

third criterion, at the exit of loop, we must have obtained desired

result i.e. the post condition must be valid. When ~B0 is true, i.e.

'sorted' has a value 'true', the loop must have iterated at least once,

since 'sorted' was initially 'false'. This implies, postcondition of

Bubble-Down loop is valid, which in turn implies the validity of R0.

Earlier in this section we have already shown that our bound function

 SN0-14

meets the forth and fifth criteria there by guarantying the termination

of our outer loop. This proves the correctness of our algorithm.

Discussions

Successful application of formal method in refinement of a program can

be judged from the easiness of its application and the benefit it

results. Formal method is generally applied top-down in constructing a

new program. When we have a program already developed, refinement is

better to start bottom-up. This seems intuitive because we need to

preserve the logic of implementation as well as the design. Following

bottom-up approach we started with refinement of the inner loop followed

by the outer loop. Refinement process that we have followed here repeats

two fundamental steps, (1) correcting the lowest level constructs such

as inner loops or conditional statements and (2) optimizing the code

around the correct construct developed in step 1. For the first step, we

use formal correctness criteria to modify components of a program

construct, for example, loop condition, invariant, condition of the

conditional statement etc. Once that is done, second step only looks for

opportunity to optimize the program keeping the correctness of program

intact, for example, removing unnecessary/unused variables,

removing/modifying unnecessary assignments etc.

Benefits of refinement using formal method are easily seen comparing

initial version of the algorithm with the final version. Among the

visible benefits, we were able to remove unnecessary variables (p and

q), unnecessary assignment statements and two conditional statements

from our initial version of the program. Many of the other benefits are

hidden. Although it is not visible from the text program, it is not very

hard to spot them if we follow every refinement steps that we have

carried out.

1. If we observe carefully, we will notice that our initial version of

algorithm will not be able to use a simple boolean variable like

'sorted', to notify whether the array is sorted or not, at the end of an

outer loop iteration. That forced me to use a subroutine for the

checking of sortedness and quit. A big performance benefit is gained by

using a boolean variable in place of a subroutine.

2. The idea of reinitializing the variables u and d which we have

inserted in our algorithm after a small debug session is no more needed

in the final version. Inner loops are now guaranteed to iterate for n

times and terminate with u and d with values n and 0 respectively. This

allows us not to differentiate between initialization and

reinitialization.

3. Our inner loops and their termination conditions are now simpler to

logically reason about them. Unlike their counter parts in our earlier

ad-hoc treatment, these inner loops now have specific purposes with

respect to the guaranteed termination of outer loop. Where the second

inner loop helps us proving the guaranteed termination of outer loop,

first inner loop helps in speeding up the sorting process.

4. After all, the most important benefit with the final version of the

program is that it can be easily proved to be correct where as its ad-

hoc counter part can not. While refining the algorithm, we developed the

invariants and bound function as a by product which will help us to

prove its correctness immediately. In comparison to this, our initial

version with more program constructs and undefined bound functions will

never be easier to prove.

 SN0-15

5. Important but the least visible benefits being a clearer

understanding of the sorting process and a compact algorithm with

program execution steps that exactly match with the mental process of

sorting with the conceived idea.

Conclusion

We started refining an already developed sorting algorithm to see if the

formal method can be used to assist us while modifying an existing code

for its correctness. In all steps of refinement process, keeping the

idea behind algorithm intact, parts of algorithm were refined for their

correctness. We used formal correctness criteria to develop and judge

the intermediate versions of algorithm in each step of refinement. The

result was a correct, provable program that is much simpler and compact

than its informal version. Besides the correctness of algorithm, better

execution performance of the program is also resulted. We believe that

formal method can be successfully used to refine existing programs.

Using correctness criteria as check list, a developed algorithm can be

modified to suit the correctness need, keeping the logic of

implementation unchanged.

Acknowledgements

I am indebted to Dr. Gries for his help in formalizing the outer loop

presented here. Apart from some cosmetic changes, his idea of

formalizing this loop is presented here as is. My failure in attempting

to formalize the same with a wrong bound function has been discussed

here for the purpose of "learning from the mistakes". Thanks are due to

him for his constant help in my exploration of the science of

programming.

References

[1]Gries, D. The Science of Programming, Springer-Verlag, New York,

1981.

[2]Dijkstra, E.W. A Discipline of Programming, Prentice Hall, Englewood

Cliffs, 1976.

18 January 2009

Motorola India Pvt. Ltd.

Hyderabad, India

