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1 Introduction

Probability Theory includes various theorems known asLaws of Large Numbers;
for instance, see [Fel68, Hea71, Ros89]. Usually two major categories are distin-
guished:Weak LawsversusStrong Laws. Within these categories there are numer-
ous subtle variants of differing generality. Also theCentral Limit Theoremsare
often brought up in this context.

Many introductory probability texts treat this topic superficially, and more than
once their vague formulations are misleading or plainly wrong. In this note, we
consider a special case to clarify the relationship between the Weak and Strong
Laws. The reason for doing so is that I have not been able to find a concise formal
exposition all in one place. The material presented here is certainly not new and
was gleaned from many sources.

In the following sections,X1, X2, . . . is a sequence ofindependentandidenti-
cally distributedrandom variables withfinite expectationµ. We define the associ-
ated sequencēXi of partialsample meansby

X̄n = 1

n

n∑
i=1

Xi .

The Laws of Large Numbers make statements about the convergence ofX̄n to µ.
Both laws relate bounds on sample size, accuracy of approximation, and degree of
confidence. The Weak Laws deal with limits of probabilities involvingX̄n. The
Strong Laws deal with probabilities involving limits of̄Xn. Especially the math-
ematical underpinning of the Strong Laws requires a careful approach ([Hea71,
Ch. 5] is an accessible presentation).

2 The Weak Law of Large Numbers

Let’s not beat about the bush. Here is what the Weak Law says about convergence
of X̄n toµ.

2.1 Theorem(Weak Law of Large Numbers) We have

∀ε>0 lim
n→∞Pr

(|X̄n − µ| ≤ ε
) = 1 . (1)
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This is often abbreviated to

X̄n
P→ µ asn→∞

or in words: X̄n convergesin probability toµ asn→∞.

On account of the definition of limit and the fact that probabilities are at most 1,
Equation (1) can be rewritten as

∀ε>0∀δ>0 ∃N>0 ∀n≥N Pr
(|X̄n − µ| ≤ ε

) ≥ 1− δ . (2)

The proof of the Weak Law is easy when theXi ’s have a finite variance. It is
most often based on Chebyshev’s Inequality.

2.2 Theorem(Chebyshev’s Inequality) Let X be a random variable with finite
meanµ and finite varianceσ 2. Then we have

Pr(|X − µ| ≥ a) ≤ σ 2

a2

for all a > 0.

A slightly different way of putting it is this: For alla > 0, we have

Pr(|X − µ| ≥ aσ) ≤ 1

a2
.

Thus, the probability thatX deviates from its expected value by at leastk standard
deviations is at most 1/k2. Chebyshev’s Inequality is sharp when no further as-
sumptions are made aboutX’s distribution, but for practical applications it is often
too sloppy. For example, the probability thatX remains within 3σ of µ is at least89,
no matter what distributionX has. However, whenX is known to have a normal
distribution, this probability in fact exceeds 0.9986.

We now prove the Weak Law when the variance is finite. Letσ 2 be the variance
of eachXi . In that case, we haveE X̄n = µ and VarX̄n = σ 2/n. Let ε > 0.
SubstitutingX, µ, σ,a := X̄n, µ, σ/

√
n, ε in Chebyshev’s Inequality then yields

Pr
(|X̄n − µ| ≥ ε

) ≤ σ 2

nε2
. (3)

Hence, forδ > 0 and for alln ≥ max{1, σ 2/δε2} we have

Pr
(|X̄n − µ| < ε

)
> 1− δ

which completes the proof.
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The Central Limit Theorem

Note thatσ = 0 is uninteresting because in that case we have Pr(Xn = µ) = 1
(on account of Chebyshev’s Inequality and continuity of probability for monotonic
sequences of events).

In the case of finite non-zero variance, the Central Limit Theorem provides a
much stronger result.

2.3 Theorem(Central Limit Theorem) If the Xi ’s have finite non-zero varianceσ 2,
then for alla ≤ b,

lim
n→∞Pr

(
a ≤ X̄n − µ

σ/
√

n
≤ b

)
= 8(b)−8(a) (4)

where8 is the standard normal distribution defined by

8(z) = 1√
2π

∫ z

−∞
e−

1
2 x2

dx .

Convergence in (4) is uniform ina andb.

The Central Limit Theorem can be interpreted as stating that for largen, the ran-
dom variableX̄n approximately has a normal distribution with meanµ and stan-
dard deviationσ/

√
n.

We now prove that the Central Limit Theorem implies the Weak Law of Large
Numbers when 0< σ < ∞. First observe that substitutinga,b := −c/σ, c/σ in
the Central Limit Theorem yields

lim
n→∞Pr

(
|X̄n − µ| ≤ c√

n

)
= 8

( c

σ

)
−8

(
− c

σ

)
. (5)

Let ε > 0 andδ > 0. Takec> 0 such that8(−c/σ ) ≤ δ/3 (this is possible since
8(z) → 0 asz→ −∞) and takeN such thatc/

√
N ≤ ε and the limit in (5) is

approached closer thanδ/3 for all n ≥ N. We derive forn ≥ N (with hints placed
between braces):

Pr
(|X̄n − µ| ≤ ε

)
≥ {monotonicity of Pr, usingc/

√
n ≤ c/

√
N ≤ ε, on account of defini-

tion of N }
Pr
(|X̄n − µ| ≤ c/

√
n
)

≥ { definition of N }
8(c/σ )−8(−c/σ )− δ/3
= { 8(z)+8(−z) = 1 }

1− 28(−c/σ )− δ/3
≥ { definition ofc }

1− δ
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This concludes the proof.
If convergence to the standard normal distribution is assumed to be ‘good’

(much better thanδ), then we can take boundN such that

8
( ε
σ

√
N
)
≥ 1− δ

2
. (6)

Compare this to the boundN ≥ σ 2/δε2 on account of Chebyshev’s Inequality.
As an example, consider the case where we want to be 95% certain that the sam-
ple mean falls within1

4σ of µ; that is, δ = 0.05 andε = σ/4. Chebyshev’s
Inequality yieldsN ≥ 16/0.05 = 320 and the standard normal approximation
yields

√
N/4≥ 1.96 orN ≥ 61.47. Thus, if the standard normal approximation is

‘good’ then our need is already fulfilled by the mean of 62 samples, instead of the
320 required by Chebyshev’s Inequality.

I would like to emphasize the following points concerning the Central Limit The-
orem.

• There exist estimates of how closely the standard normal distribution ap-
proximates the distribution of the sample mean. Consult [Fel71, Hea71] for
the Berry–Ess´een bound.

• If the Xi ’s themselves have a normal distribution, then so does the sample
mean and the ‘approximation’ in the Central Limit Theorem is in fact exact.

• The more general versions of the Weak Law are not derivable from (more
general versions of) the Central Limit Theorem.

3 The Strong Law of Large Numbers

Let’s start again with the theorem.

3.1 Theorem(Strong Law of Large Numbers) We have

Pr
(

lim
n→∞ X̄n = µ

)
= 1 . (7)

This is often abbreviated to

X̄n
a.s.→ µ asn→∞

or in words: X̄n convergesalmost surelytoµ asn→∞.

One of the problems with such a law is the assignment of probabilities to state-
ments involving infinitely many random variables. For that purpose, one needs a
careful introduction of notions likesample space, probability measure, andrandom
variable. See for instance [Tuc67, Hea71, Chu74a, LR79].

Using some Probability Theory, the Strong Law can be rewritten into a form
with probabilities involving finitely many random variables only. We rewrite Equa-
tion (7) in a chain of equivalences:
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Pr
(

lim
n→∞ X̄n = µ

)
= 1

⇔ { definition of limit }
Pr
(∀ε>0 ∃N>0 ∀n≥N |X̄n − µ| ≤ ε

) = 1 (8)

⇔ { Note 1 below}
∀ε>0 Pr

(∃N>0 ∀n≥N |X̄n − µ| ≤ ε
) = 1 (9)

⇔ { Note 2 below}
∀ε>0∀δ>0 ∃N>0 Pr

(∀n≥N |X̄n − µ| ≤ ε
) ≥ 1− δ (10)

⇔ { Note 3 below}
∀ε>0∀δ>0 ∃N>0 ∀r≥0 Pr

(∀N≤n≤N+r |X̄n − µ| ≤ ε
) ≥ 1− δ (11)

Comparing Equations (2) and (10) we immediately infer the Weak Law from the
Strong Law, which explains their names.

In order to supply the notes to above derivation, let(�,F , P) be an appropriate
probability space for the random variablesXi , and define eventsAε, BN, andCr

for ε > 0, N > 0, andr ≥ 0 by

Aε = {ω ∈ � | ∃N>0 ∀n≥N |X̄n(ω)− µ| ≤ ε}
BN = {ω ∈ � | ∀n≥N|X̄n(ω)− µ| ≤ ε}
Cr = {ω ∈ � | ∀N≤n≤N+r |X̄n(ω)− µ| ≤ ε} .

These events satisfy the following monotonicity properties:

Aε ⊇ Aε′ for ε ≥ ε′
BN ⊆ BN+1

Cr ⊇ Cr+1 .

Therefore, on account of the continuity of probability measureP for monotonic
chains of events, we have

P(
⋂∞

m=1 A1/m) = lim
m→∞ P(A1/m) (12)

P(
⋃∞

N=1 BN) = lim
N→∞

P(BN) (13)

P(
⋂∞

r=0 Cr ) = lim
r→∞ P(Cr ) . (14)

Note 1.We derive

Pr
(∀ε>0 ∃N>0 ∀n≥N |X̄n − µ| ≤ ε

) = 1

⇔ { definitions of Pr andAε }
P(
⋂
ε>0 Aε) = 1

⇔ {monotonicity ofAε, using 1/m→ 0 asm→∞ }
P(
⋂∞

m=1 A1/m) = 1

⇔ { (12) }
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lim
m→∞ P(A1/m) = 1

⇔ { property of limits, using thatP(A1/m) is descending and at most 1}
∀m>0 P(A1/m) = 1

⇔ { see first two steps, also using monotonicity ofP }
∀ε>0 Pr

(∃N>0 ∀n≥N |X̄n − µ| ≤ ε
) = 1

Note 2.We derive forε > 0

Pr
(∃N>0 ∀n≥N |X̄n − µ| ≤ ε

) = 1

⇔ { definitions of Pr andBN, and set theory}
P(
⋃∞

N=1 BN) = 1

⇔ { (13) }
lim

N→∞
P(BN) = 1

⇔ { definition of limit, usingP(Bk) ≤ 1 }
∀δ>0 ∃N>0 ∀k≥N P(Bk) ≥ 1− δ
⇔ {monotonicity ofP, usingBk ⊇ BN for k ≥ N }
∀δ>0 ∃N>0 P(BN) ≥ 1− δ
⇔ { definitions of Pr andBN }
∀δ>0 ∃N>0 Pr

(∀n≥N |X̄n − µ| ≤ ε
) ≥ 1− δ

Note 3.We derive forε > 0, δ > 0, andN > 0

Pr
(∀n≥N |X̄n − µ| ≤ ε

) ≥ 1− δ
⇔ { definitions of Pr andCr , and set theory}

P(
⋂

r≥0 Cr ) ≥ 1− δ
⇔ { (14) }

lim
r→∞ P(Cr ) ≥ 1− δ
⇔ { property of limits, using thatP(Cr ) is descending}
∀r≥0 P(Cr ) ≥ 1− δ
⇔ { definitions of Pr andCr }
∀r≥0 Pr

(∀N≤n≤N+r |X̄n − µ| ≤ ε
) ≥ 1− δ

Quotes from the literature

I have not been able to find a reference that explicitly presents the preceding chain
of equivalent expressions for the Strong Law ([Chu74a, Ch. 4] comes close). Many
authors take one of these expression as definition. Below are some typical quotes
to illustrate the state of affairs. Note that each of these quotes contains a partly
verbal expression, which in some cases is even ambiguous as to the order of the
quantifiers.

The paraphrasing of the Strong Law in [Ros89, p. 351] resembles Equation (8),
though it is also possible to read it as Equation (9):
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“In particular, [the Strong Law] shows that, with probability 1, for any
positive valueε,∣∣∣∣∣

n∑
i=1

Xi

n
− µ

∣∣∣∣∣
will be greater thanε only a finite number of times.”

Equation (10) can be recognized in [Hea71, p. 226]:

“Indeed for arbitrarily smallε > 0, δ > 0, and largeN = N(ε, δ), . . .
the [definition] ofXn

a.s.→ X . . . can be restated . . . as

P

( ∞⋂
n=N

{ω | |Xn(ω)− X(ω)| < ε}
)
> 1− δ

. . . ”

Equation (11) resembles the definition in [Fel68, p. 259]:

“We say that the sequenceXk obeys the strong law of large numbers
if to every pairε > 0, δ > 0, there corresponds anN such that there
is probability 1− δ or better that for everyr > 0 all r + 1 inequalities

|Sn −mn|
n

< ε, n = N, N + 1, . . . , N + r

will be satisfied.”

Proofs of the Strong Law

Again the case with finite variance is easier than the general case. Most of the
proofs that I have encountered for the Strong Law assuming finite variance are
based on Kolmogorov’s Inequality, which is a generalization of Chebyshev’s In-
equality. Even in that case there are still some technical hurdles (I will not go into
these). Consequently, the proofs do not give rise to an explicit boundN in (11)
in terms ofε andδ. An exception is [Eis69], where the Hajek–R´enyi Inequality is
used, which is a generalization of Kolmogorov’s Inequality.

There is, however, a nice overview article, namely [HR80], that specifically
looks at boundsN in terms ofε andδ. It shows, among other things, that

Pr
(∃n≥N |X̄n − µ| ≥ ε

) ≤ σ 2

Nε2
. (15)

Compare this result to (3): it is the same upper bound but for a much larger event.
This creates the impression that the Weak Law is not that much weaker than the
Strong Law.
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4 Concluding Remarks

We have looked at one special case to clarify the relationship between the Weak
and the Strong Law of Large Numbers. The case was special in that we have
assumedXi to be a sequence of independent and identically distributed random
variables with finite expectation and that we have considered the convergence of
partial sample means to the common expectation. Historically, it was preceded
by more special cases, for instance, with theXi restricted to Bernoulli variables.
Nowadays these laws are treated in much more generality.

My main interest was focused on Equations (8) through (11), which are equivalent—
but subtly different—formulations of the Strong Law of Large Numbers. Further-
more, I have looked at “constructive” bounds related to the rate of convergence.

Let me conclude with some sobering quotes (also to be found in [Chu74b,
p. 233]). Feller writes in [Fel68, p. 152]:

“[The weak law of large numbers] is of very limited interest and should
be replaced by the more precise and more useful strong law of large
numbers.”

In [Wae71, p. 98], van der Waerden writes:

“[The strong law of large numbers] scarcely plays a role in mathemat-
ical statistics.”

Acknowledgment I would like to thank Fred Steutel for discussing the issues
in this paper and for pointing out reference [HR80].
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