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1 Introduction

Probability Theory includes various theorems knowrLaw's of Large Numbeys

for instance, see [Fel68, Hea71, Ros89]. Usually two major categories are distin-
guished:Weak LawsersusStrong LawsWithin these categories there are numer-
ous subtle variants of differing generality. Also tBentral Limit Theoremsire

often brought up in this context.

Many introductory probability texts treat this topic superficially, and more than
once their vague formulations are misleading or plainly wrong. In this note, we
consider a special case to clarify the relationship between the Weak and Strong
Laws. The reason for doing so is that | have not been able to find a concise formal
exposition all in one place. The material presented here is certainly not new and
was gleaned from many sources.

In the following sectionsXj, Xo, ... is a sequence dhdependenandidenti-
cally distributedrandom variables witfinite expectationu. We define the associ-
ated sequenck; of partial sample meanky

_ 10
X, = ﬁi;xi.

The Laws of Large Numbers make statements about the convergebGetof.

Both laws relate bounds on sample size, accuracy of approximation, and degree of
confidence. The Weak Laws deal with limits of probabilities involvidg The
Strong Laws deal with probabilities involving limits &f,. Especially the math-
ematical underpinning of the Strong Laws requires a careful approach ([Hea71,
Ch. 5] is an accessible presentation).

2 The Weak Law of Large Numbers

Let's not beat about the bush. Here is what the Weak Law says about convergence
of X,, to u.
2.1 Theorem(Weak Law of Large Numbgrs We have

Voo lim Pr({Xn—nul <&)=1. (1)
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This is often abbreviated to
X, 5 u  asn— oo
or in words: X,, convergesn probability to 4 asn — oo. J

On account of the definition of limit and the fact that probabilities are at most 1,
Equation (1) can be rewritten as

Ve-0V¥s520Ins0 V=N Pr(|Xn —pl <€) =156 (2

The proof of the Weak Law is easy when thgs have a finite variance. It is
most often based on Chebyshev’s Inequality.

2.2 Theorem(Chebyshev’s Inequality Let X be a random variable with finite
meanu and finite variance 2. Then we have

2

o
PrqX —ul>a) < 2

foralla > 0. o

A slightly different way of putting it is this: For alh > 0, we have

PrIX — il 2 80) = 5.

Thus, the probability thaX deviates from its expected value by at Idastandard
deviations is at most/k?. Chebyshev’s Inequality is sharp when no further as-
sumptions are made aboXts distribution, but for practical applications it is often
too sloppy. For example, the probability tharemains within 3 of . is at Ieas%,
no matter what distributiorX has. However, wheiX is known to have a normal
distribution, this probability in fact exceed9986.

We now prove the Weak Law when the variance is finite.d“%be the variance
of eachX;. In that case, we havE X, = u and VarX, = o2/n. Lete > 0.
SubstitutingX, 1, o, a := Xp, i, 0/4/N, € in Chebyshev’s Inequality then yields

62

Pr(|Xn—nl>¢) < A3)

ne?
Hence, fors > 0 and for alln > max1, o2/8¢?} we have
Pr(l)_(n—m <8) > 1-§

which completes the proof.



The Central Limit Theorem

Note thate = 0 is uninteresting because in that case we hayXPe 1) = 1
(on account of Chebyshev’s Inequality and continuity of probability for monotonic
sequences of events).

In the case of finite non-zero variance, the Central Limit Theorem provides a
much stronger result.

2.3 Theorem(Central Limit Theorem If the X;’s have finite non-zero varianee,
then for alla < b,

lim Pr(a§ Xn;# §b> = db)-d( 4)

n— oo O’/

where® is the standard normal distribution defined by

d(2) = ! /Z e 2¢dx
B A/ 27T —00 '
Convergence in (4) is uniform ia andb. 4

The Central Limit Theorem can be interpreted as stating that for lartfee ran-
dom variableX,, approximately has a normal distribution with mearand stan-

dard deviatiors//n.
We now prove that the Central Limit Theorem implies the Weak Law of Large
Numbers when G< o < oo. First observe that substitutirg b := —c/o, c/o in
the Central Limit Theorem yields
, - c c c
i pr(1%-u = ) = o (3) -0 (7). ©

Lete > 0 ands > 0. Takec > 0 such thatb (—c/o) < §/3 (this is possible since
® (z) - 0asz — —oo) and takeN such thaic/+/N < e and the limit in (5) is
approached closer tha3 for alln > N. We derive fom > N (with hints placed
between braces):

Pr(|)_(n —ul = 8)

> { monotonicity of Pr, using/./n < c/\/ﬁ < g, on account of defini-
tion of N }

Pr(I1Xn — ul < c/¥/n)
> { definition of N }
®(c/o) — D (—Cc/o) —5/3
= {2+ P(-2) =1}
1-2d(—c/o)—45/3
> { definition ofc }
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This concludes the proof.
If convergence to the standard normal distribution is assumed to be ‘good’
(much better thagd), then we can take bound such that

(EVR) = 1-3. (©)

Compare this to the bounN > ¢2/8¢2 on account of Chebyshev’s Inequality.

As an example, consider the case where we want to be 95% certain that the sam-
ple mean falls within;llo of u; that is,§ = 0.05 ande = o/4. Chebyshev’s
Inequality yieldsN > 16/0.05 = 320 and the standard normal approximation
yields+/N/4 > 1.96 orN > 61.47. Thus, if the standard normal approximation is
‘good’ then our need is already fulfilled by the mean of 62 samples, instead of the
320 required by Chebyshev’s Inequality.

I would like to emphasize the following points concerning the Central Limit The-
orem.

e There exist estimates of how closely the standard normal distribution ap-
proximates the distribution of the sample mean. Consult [Fel71, Hea71] for
the Berry—Essén bound.

o If the X;’s themselves have a normal distribution, then so does the sample
mean and the ‘approximation’ in the Central Limit Theorem is in fact exact.

e The more general versions of the Weak Law are not derivable from (more
general versions of) the Central Limit Theorem.

3 The Strong Law of Large Numbers

Let’s start again with the theorem.

3.1 Theorem(Strong Law of Large Numbérs We have

Pr(lim )_(n:u) = 1. (7)

n—o00

This is often abbreviated to
v as.
Xn = W asn — oo
or in words: X,, convergesalmost surelyto 1 asn — oo. J

One of the problems with such a law is the assignment of probabilities to state-
ments involving infinitely many random variables. For that purpose, one needs a
careful introduction of notions likeample spacgrobability measureandrandom
variable See for instance [Tuc67, Hea71, Chu74a, LR79].

Using some Probability Theory, the Strong Law can be rewritten into a form
with probabilities involving finitely many random variables only. We rewrite Equa-
tion (7) in a chain of equivalences:



Pr(nILmoo Xn = M) =1

& { definition of limit }

Pr(Ve03nsoVnz=n[Xn —ul <€) =1 )
& { Note 1 below}

VesoPr(InsoVn=n [Xn —pl <&) =1 9
& { Note 2 below}

Ve0VY5-0In-0 Pr(Vnon [ Xn —pl <€) = 1-6 (10
& { Note 3 below}

Ve=0VY5-0In=0 Vi=0 Pr(VNznensr [Xn —pl <€) > 1-6 (11

Comparing Equations (2) and (10) we immediately infer the Weak Law from the
Strong Law, which explains their names.

In order to supply the notes to above derivation({et 7, P) be an appropriate
probability space for the random variabl¥s, and define eventd,, By, andC,
fore > 0,N > 0,andr > 0 by

A = {oe Q]In0VYnen | Xn(@) — ul < ¢}
By = {we Q| VnlXnlw) — ul < ¢}
C = {weQ|V¥nnenir [Xn(@) — pu| < e}

These events satisfy the following monotonicity properties:

A O A fore > ¢’
B € Bnpa
Cr 2 Cr+1 .

Therefore, on account of the continuity of probability measBrér monotonic
chains of events, we have

P(ﬂronozl A1/m) = n!ﬂ;noo P(Al/m) (12)
P(UR-1Bn) = Nlinoo P(Bn) (13)
P(ﬂ;’io C) = rIim P . (14)

Note 1. We derive

Pr(VesoIn=oVnzn[Xn—ul <¢) =1

& { definitions of Pr andd, }
P(me>0 Aé‘) =1

& { monotonicity ofA,, using ¥m — 0 asm — oo }
P(Mmer Aym) =1

< {12}



lim P(Aym) =1

& { property of limits, using thaP (As/m) is descending and at mosf§ 1
V=0 P(Aym) =1

& { see first two steps, also using monotonicityRof
VesoPr(InsoVn=n [Xn —p <¢) =1

Note 2. We derive fore > 0

Pr(InsoVn=n [Xn—pul <e) =1

& { definitions of Pr andy, and set theory
P(Un_e B =1

< {(13)})
Nliinoo P(By) =1

& { definition of limit, usingP(By) < 1}
Vs=03In>0Yik=n P(Bx) > 1-6

& { monotonicity ofP, usingBx © By fork > N }
Vs~03n-0 P(Bn) > 16

& { definitions of Pr andy }
V5-0IN=0Pr(Vnsn [Xn — | <€) >1-38

Note 3. We derive fore > 0,8 > 0, andN > 0

Pr(vnzN |>_<n —pul = 8) >1-6

& { definitions of Pr andC,, and set theory
P(20C) =1-9¢

< {(14))
rIi_)rr;o PC)=1-56§

& { property of limits, using thaP (C;) is descending
Viso P(C;) > 14§

& { definitions of Pr andC; }
V0 Pr(Vnznentr [Xn —pl <€) >1-34

Quotes from the literature

| have not been able to find a reference that explicitly presents the preceding chain
of equivalent expressions for the Strong Law ([Chu74a, Ch. 4] comes close). Many
authors take one of these expression as definition. Below are some typical quotes
to illustrate the state of affairs. Note that each of these quotes contains a partly
verbal expression, which in some cases is even ambiguous as to the order of the
quantifiers.

The paraphrasing of the Strong Law in [R0os89, p. 351] resembles Equation (8),
though it is also possible to read it as Equation (9):
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“In particular, [the Strong Law] shows that, with probability 1, for any
positive values,

n

>

i=1

will be greater than only a finite number of times.”
Equation (10) can be recognized in [Hea71, p. 226]:

“Indeed for arbitrarily smalk > 0,6 > 0, and largeN = N(g, 9), ...
the [definition] of X, 2% X ... canberestated ... as

P (ﬂ{w | [Xn(@) — X(@)| < g}> >1-34

n=N
Equation (11) resembles the definition in [Fel68, p. 259]:

“We say that the sequencé obeys the strong law of large numbers
if to every paire > 0,48 > 0, there corresponds aw such that there
is probability 1— § or better that for every > 0 allr + 1 inequalities

[Sh — mp|
—_— <
n

€, N=N,N+1,...,N+r
will be satisfied.”

Proofs of the Strong Law

Again the case with finite variance is easier than the general case. Most of the
proofs that | have encountered for the Strong Law assuming finite variance are
based on Kolmogorov’s Inequality, which is a generalization of Chebyshev’s In-
equality. Even in that case there are still some technical hurdles (I will not go into
these). Consequently, the proofs do not give rise to an explicit bdund (11)
in terms ofe andé. An exception is [Eis69], where the Hajekefji Inequality is
used, which is a generalization of Kolmogorov’s Inequality.

There is, however, a nice overview article, namely [HR80], that specifically
looks at bounddN in terms ofe andé. It shows, among other things, that

— (72
Pr(3nsn [ Xn — u| > < —.
( n>N | n /’L| e 8) — NSZ
Compare this result to (3): it is the same upper bound but for a much larger event.
This creates the impression that the Weak Law is not that much weaker than the

Strong Law.

(15)



4 Concluding Remarks

We have looked at one special case to clarify the relationship between the Weak
and the Strong Law of Large Numbers. The case was special in that we have
assumedX; to be a sequence of independent and identically distributed random
variables with finite expectation and that we have considered the convergence of
partial sample means to the common expectation. Historically, it was preceded
by more special cases, for instance, with ¥erestricted to Bernoulli variables.
Nowadays these laws are treated in much more generality.

My main interest was focused on Equations (8) through (11), which are equivalent—
but subtly different—formulations of the Strong Law of Large Numbers. Further-
more, | have looked at “constructive” bounds related to the rate of convergence.

Let me conclude with some sobering quotes (also to be found in [Chu74b,
p. 233]). Feller writes in [Fel68, p. 152]:

“[The weak law of large numbers] is of very limited interest and should
be replaced by the more precise and more useful strong law of large
numbers.”

In [Wae71, p. 98], van der Waerden writes:

“[The strong law of large numbers] scarcely plays a role in mathemat-
ical statistics.”

Acknowledgment | would like to thank Fred Steutel for discussing the issues
in this paper and for pointing out reference [HR80].
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