(]

Phase synchronization for a string of machines

The Eindhoven Tuesday Afternoon Club!
dedicated to Prof.Dr. F.E.J. Kruseman Aretz

In this note we present yet another example of how traditionally complicated artefacts like
parallel programs can nowadays be developed in a highly systematic manner by means
of simple formalisms such as the predicate calculus and the theory of Owicki and Gries.
Operational thought is largely — if not completely — abandoned, even in arguing about
progress properties.

Moreover, we refute the often heard conjecture that the theory of Owicki and Gries would
— at best — be suitable for the a posteriori verification of shared-memory parallel programs,
because at this occasion we will use it for the construction of a distributed algorithm.

* - *
We consider N +1 machines, numbered 0 through N. They are arranged in a linear network

such that machinez, 1 <: < N —1, can communicate with machines : — 1 and 7 + 1 only,
machine 0 with just machine 1, and machine N with just machine N — 1.

Each machine is engaged in a computation proper given by
Mach.z : *[Si],

where S; is a terminating computation.

In order to express our synchronization requirement we introduce fresh variables z; and
adjust the program texts as follows:

Pre: (Visa; =10)

Mach.: :] L Vjua; ey } 5

1A. Bijlsma, R.W. Bulterman, W.H.J. Feijen, A.J.M. van Gasteren, R.R. Hoogerwoord, C.S. Scholten,
F.W. van der Sommen

(N

The Eindhoven Tuesday Afternoon Club

(It goes without saying that no further changes of z; are allowed in what follows.)

The requirement now is to superimpose, on the computation proper, an additional algo-
rithm so that the plugged-in assertion

Zi : (V] P 73 S (Ej)
be a correct precondition to .S;, for all 2.

ES

Before we embark on a solution, we wish to point out how we will deal with individual
progess in examples like the above.

Irrespective of what our ultimate solution will be, relation
MB: Vi, g oy £1425)

is a system invariant: just apply the axiom of assignment for z; := 1 + z; and use pre-
condition Z;. Relation MB is a so-called multibound [WF195], and in combination with
the structure of our machines, its impact is that only two things can happen as far as
“liveness” is concerned, viz. in whatever solution we may come up with

either all machines are guaranteed to make individual progress

or all machines get stuck (i.e. total deadlock).

So, in what follows we can show individual progress by just showing the absence of total

deadlock.

Now, if there were no restrictions on the communication facilities, a first and simple solution
would be

Pre: V7 2 2;=0)

Mach.i : *[if (Vg <x;) —skiphi

Phase synchronization 3

The local correctness of Z; follows from the guard, and its global correctness by the Rule
of Widening - other machines only increase z;, thus making Z; more true than before —.

The problem with the above solution, however, is the guard which, due to the limited
communication facilities, just cannot be evaluated by Mach.:. That guard is equivalent to

(0) zi < {17 25)

and inspired by the topology of the network, we rewrite it into
g S (ljiSiim) L {ljg2i2y),

and then — introducing variables /; and r; — into

(1) z; < i lri,

hoping that we can maintain

(2a) L={lf:i 5 vsm) and

(2b) pe=dlini 2aimy) s

Maintaining relations (2) is, however, far too demanding because a simple increase of just
one z; might necessitate an adjustment of many I’s and many r’s.

Here is the place to remember a very simple, but useful, theorem from the art of multipro-
gramming, viz. the theorem dubbed Strengthening the Guard. It states that strengthening
a guard of an if-statement is harmless to the partial correctness, i.e. the correctness of the
annotation. Hence, by this theorem, it suffices that our original guard (0) be implied by
our proposed guard (1), and this is the case if we can maintain, instead of (2), the weaker

(3a) EZlljefsiizy and

(3b) rpallfig 2t .

And this is what we shall do.

4 The Eindhoven Tuesday Afternoon Club

In view of the shapes of our guards (1), progress of the multiprogram is best served when
the I’s and r’s are chosen as large as possible. In particular, there is no point in maintaining
(3) by decreasing [; or r;. This, we will have to bear in mind.

By the shape of the network, there are only few meaningful possibilities for updating ;. If
Mach.7 is to keep track of the value for /;, and Mach.(z — 1) for [;_;, it is sweetly reasonable
that we rewrite (3a) into

Le(lyjij<i—ligg) las, 1<z,
which, by (3a) (2 := ¢ — 1) is implied by
LA g o2y
and this is established by the assignment
bo=Hhale; 1<,
For Mach.0 we find that
lg = 3y
maintains (3a).
Now, fortunately, if we stick to these assignments to the s, the I’s are never decreased: [y

does not decrease because zo doesn’t, and [;, 1 <z, does not decrease because neither z;
nor — by induction — [;_; does so.

The next problem is how to superimpose these assignments on our existing multiprogram.
For reasons of simplicity, we decide to equip Mach.: with a co-component

CL.i: *[Zi:zli—llxi], 1Si

running in parallel with Mach.i and the rest of the system, and continuously updating ;.
For reasons of symmetry we also introduce a co-component for updating r;. We thus arrive
at the solution depicted in Figure 0.

Phase synchronization d

Pre: Wsg=0AL=08rn=0
Inv: (Vi s £ llg o] Ti:aty)
AmElig2ise))

Mach.: (0 <¢< N):
x [fa; <l;|r;—skipfi
4 Zys MLy } 5

@i =1bax;

* [l, :-‘—“l,'_ll:l,',']
CL.0 * [lo = IZT()]

CRi (0<i<N-1)

¥ | 7 = P L8]

CR.N: i | # = &y]
Figure 0.
* 4 *

Our remaining obligation is to investigate whether or not this solution exhibits the danger
of total deadlock. We shall argue that it does not.

To that end, assume that all Mach.: are stuck in their guarded skips. As a result all z; are
constant. Because the co-components CL.z continue to operate, within a finite number of
steps all /; will be equal to some z-value: Iy by construction, and /;, 1 < z, by induction
and construction. Symmetrically, all r; will eventually be equal to some z-value. As a
consequence, a Mach.: that holds the minimal z-value then has a stably true guard and
can therefore proceed.

It very much depends on the architecture of the executing machinery whether or not our
solution is acceptable. If it is acceptable, that is fine, and if it is not we may further
elaborate on it.

6 The Eindhoven Tuesday Afternoon Club

Just for the sake of the argument and for showing how we wish to reason about further
detailing our solution, we shall indicate how the ever growing integer variables z, [, and r
can be eliminated from the program.

First, consider Mach.z with the following annotation
#[fz; <l lri—skipfi
5 Si
{zish }

s@o=1 4@

]

Assertion z; < I; is locally correct — from the guard -, and it is globally correct because I;
does not decrease. As a consequence, relation

z; <1+

is an invariant of the system. From (3a), we also have the invariance of
L <,

and therefore we have

(4) 0L op—h<1,

Hence, the differences x; — [; are very small.

From MB - (V2,7 :: ; <1+ z;) — we see that the differences between the z-values are
very small as well. What about the differences between [-values?

Assignment [; := [;_; | z; in CL.7 establishes
Ly,

and because [;_; does not decrease, this relation is maintained. So, the l-sequence is
descending. Moreover, we observe

lica

< {(Ba)(i:=i-1)}

Phase synchronization 7

Ti-1

< {MB}
1+ =z

< {(@}
2+,

and hence we have
(5) Ll 124,

(That the difference [;_; — I; can indeed assume the value 2 follows from a simulation, not
given here.)

The question now is how we can use (4) and (5) to eliminate the z’s and the I’s from our
program texts.

In view of (4) and the shape of Mach.z, we introduce new variables d; and e;, coupled to
the old ones by

di=$i—l,' and € =X;—T;,

in terms of which Mach.z can readily be rewritten as

Mach.: : [if d; <0Ae; <0 —skipfi
£7
3 cl,-,e,- = 1,1

(or dj,ei:=1+d;,1+¢)

(The two-valued d’s and €’s can be implemented by booleans or by circuitry, if so desired.)

For the co-components the situation is slightly more difficult. Because /; does not decrease,
we can rewrite

Glst ¢ #[=1Ly | ;]

into the equivalent

8 The Eindhoven Tuesday Afternoon Club

CL ; wl i L g Jmg =l o= B Lo
0 5Li>1liq | — skip
fi
I

and this one into the equivalent
€l ¢ *[ﬁli<li—llxi—>li:=lz'—1l-77iﬁ_]-
Now, let us spell out the guard:

b < di g] @
= { def. |}

h<lianlh<ez;
= {4}

li<li—1/\1+li=$i (*)
= {(®)}{d=z-1L}

li?éli_l/\di—_—-l.

From the line marked (%) we conclude that the guard implies [;_; | z; = 1 + [;, so that
the assignment [; := l;_; | @; can be simplified to /; := 1 + ;. For the sake of maintaining
d; = z; — l;, we have to expand it to l;,d; := 1+ 1;,0 (or: l;,d; :=1+1;,—1 4 d;).

Furthermore, because the guard is stable — i.e. cannot be falsified by the other components
of the multiprogram — there is no need to embed its evaluation and the subsequent assign-

ment into one atomic statement: they can be uncoupled (see [FvdS94]). Thus, we get as
our next approximation for CL.¢

CL.z : *[ﬁl,’#li_.l/\di:l—)Skipﬁ
3 lz,dz | + l,-,O
]s
And from this we clearly see that, as far as the values of [; and /;_; are concerned, we are
only interested in their being different or not.

In view of this latter observation and of (5), we now introduce new variables A; coupled to
the old ones by '

Phase synchronization 9

Then, [; # l;_; can be rewritten as \; # A\;—; and [; :=1+1; as A; := (1 + \;) mod 3.

(The only thing that matters about the 3 is that it is larger than the 2 occurring in (5).
It is precisely here where we use the limited range for /;_; — [;.)

Summarizing, we arrive at the algorithm depicted in Figure 1.

Pre: Windi=0Aeg=0AX=0Ap;=0)

Mach.i (0 << N):
* [ifdi <O0Ae; <0 —skipfi

Cli (1<i<N):
* [M #F N1 Adi=1—skip fi
i Aiyd; = (14 ;) mod 3,0
]
CL.O : « [fdo=1—skipfi
; Ao, dp := (1 4+ Ao) mod 3,0

]

CRi (0<i<N=1)
* [pi#pipiAe;=1—skipfi
; pirei :=(1+ p;) mod 3,0
]
CR.N : * [fexn=1—skipf
; pNyen = (1+ py) mod 3,0

]

Figure 1.

So much for this particular elaboration. Of course, many other variations or deviations are
possible, but the point is that we wanted to illustrate how computing science can nowadays

10 The Eindhoven Tuesday Afternoon Club

handle programming problems that - not too long ago — were frighteningly complex. It is
pleasing to observe that for deriving programs like the one in this note we only need very
simple formalisms, while at the same time it is hard to conceive how an operational mind
could ever arrive at such solutions.

We kindly and respectfully offer this design to Prof.Dr. F.E.J. Kruseman Aretz, who always
was and still is a dignified professor of computing science, an intellectual of high standing,
a modest yet excellent scientist, and a master in teaching and education. It is our departed
J.L.A. van de Snepscheut who once said of him: “He is the best teacher I ever had!”.

Acknowledgement. We thank R.W. Bulterman for proposing this algorithm for a tree-
shaped network.

WF195 W.H.J. Feijen, The multibound, Technical Note, Eindhoven University of Tech-
nology, Jan ’95.

FvdS94 F.W. van der Sommen, Multiprogram Derivations, Master’s Thesis, Eindhoven
University of Technology, Oct ’94.

