A very beginning of lattice theory

Let’s start at the very beginning.
A very good place to start.

Julie Andrews in The Sound of Music

For a large part, mathematics consists of exploring concepts and of inves-
tigating and proving their properties. The art of proving plays a major
role in this game. Since the advent of modern computing science, it has
become clear that in many branches of elementary mathematics, proofs can
be beneficially rendered in a calculational format. The benefits comprise
greater precision and lucidity —without loss of concision—, an enhanced
view on how to separate one’s concerns, and hence an improved economy
of thought. Unfortunately, most textbooks on elementary mathematical
issues have not (yet) adopted such a calculational style, so that yet another
generation of young people will receive a mathematical education without
having experienced the joy and usefulness of calculating. And this is a pity.

The purpose of this note is to transmit some of the flavour of calculation.
We have selected a topic from the very beginning of lattice theory and we
intend to present a treatment that can be read, understood, and hopefully
enjoyed by a reasonable university freshman.

* *

Our universe of discourse will be some fixed, anonymous set of things
on which a binary relation < (” at most”) is defined. This relation we
postulate to be

. reflexive, i.e. r<zx (V)
. antisymmetric, I.e. r<y ANy<z => xz=y (Va,y)

Remark  In the standard literature we usually find the additional pos-
tulate that < 1s

transitive, l.e. r<y ANy<z = x<z (Vo,y,2)

For the time being though, we do not need the transitivity of < . There-
fore, we do not introduce it now. And apart from that, it will — as we



shall see — enter the picture in a totally different way.

End Remark .

Equality of things is a very important concept to have. It is as important
as the notion of a function. Equality and functions are at the heart of
mathematics, and they are beautifully related by the

Rule of Leibniz
For any function f!, z=y = fax=/fy
End

The two postulates that we have of < do not reveal very much about
equality; only the antisymmetry mentions it. Therefore, the first thing to
do 1s to collect some more facts concerning equality. The most common
one is the

Rule of Mutual Inequality
r=y = z<y ANy<lz
End
It is an immediate restatement of < ’s reflexivity and antisymmetry.

A very useful but less common statement about equality is the so-called

Rule of Indirect Equality

r=y = (Vzu z<e=z<y)

End

Let us prove it. We prove it by mutual implication. (In our jargon we
refer to the implication LHS = RHS from left to right by “ping” and to
RHS= LHS by “pong”.)

Proof of ping
r=y = (Vz: z<ez=2<y)
{ (P=) distributes over ¥ }

(Vz: 2=y = (z2<e=2<y))
{ Rule of Leibniz, see below }

irue

The function f involved in this application i1s the boolean function given
by fa = z<a .

1We denote function application by an infix dot.



End

Proof of pong  We have to prove
(Vzuz<oe =25y ) => e=y ,

and we do so by setting up a weakening chain of predicates that begins with
the antecedent and ends with the consequent. Notice that in this chain we
will quite likely have to refer to the antisymmetry of < because this is
the only property of < that mentions the =-symbol; and we have not
used it in the ping-part yet. (The latter remark is a very simple example of
the kind of bookkeeping that has proven to be very useful in proof design.)
Here is the chain

(Vzu z<e = 2<y)
= { instantiate with z:=z and with z:=y }
(x<z =2<y) A (y<z =y<y)
= { reflexivity of < '}
r<y N y<z
= { antisymmetry of < }
r=y

Notice that the first step —the instantiation— is not brilliant at all: the
first line contains symbol ¥V and the target line does not, so that somewhere
along the way we must eliminate V. In fact, about the only rule from the
predicate calculus with which one can eliminate the universal quantifier V,
is the rule of instantiation. Once we are aware of this, the step is no longer
a surprise. Furthermore, there is not much we can instantiate z with, viz.
just z and y ; and we did both in order to make the next line as strong
as possible; which 1s beneficial if one has to construct a weakening chain.
End Proof of pong .

The rule of Indirect Equality has a companion, also called the Rule of
Indirect Equality. It reads

r=y = (Vzu o<z =y<z)

The difference is the side of the < -symbol at which z and y reside.
Which of the two 1s to be used depends on the particular application.

* *

So much for < and for = in our universe. We now enter lattice theory



by postulating that in our universe the equation in p
p{Vzu p<z = 2<z ANy<z)

has, for each # and y , at least one solution. (The inexperienced reader
should not feel daunted here: in case our universe is just the universe of
real numbers with the usual < -relation, the maximum of # and y may

be recognized as a good candidate for p .)

The first thing we do is to show that the equation has at most one
solution. This is done by showing p=g¢ , for p and ¢ solutions of the
equation. Here, one of the rules of Indirect Equality comes in handy: for
any z , we have

p<z

{ p is asolution }

r<z N y<z

{ ¢ is asolution }

§<z

— bl

and, hence, p=¢g . So our equation has exactly one solution for each =z
and y. Therefore, that solution is a function of x and y , which we
propose to denote by z Ty (& “up”y ). In summary, we have the beautiful

(0) rly<z = z<z Ay<z (Vo,y,2)

(In the standard literature we find 1 under entries like “sup” or “join” or

((lub” .)

Examples

e A well-known instance of (0) can be found in set theory. If we
take set inclusion C as an instance of < —it is reflexive and
antisymmetric!— | set union U is the corresponding 7T . Indeed, we
have for all sets =,y ,and =z,

rUy Cz = xCz2 ANyCz

e Also, if we take set containment O for < | set intersection is the
corresponding | . Indeed,

rTNyDz = 22 Ny2z

e Another well-known instance is in the predicate calculus where we
have

[zVy=z] = [e=z]A[y=2z] , and



[2Ay<=z] = [ecz]|A[ysz].

e From number theory we know the reflexive, antisymmetric relation
denoted | (“divides”). Now, the least common multiple of # and y
can see the light via

(zlemy) |z = x|z ANylz ,
and the greatest common divisor of  and y by
zl(xgedy) = z|le Azly
Both are instances of (0). (How?)
e But probably the best-known instance of (0) is when we take for <

the usual order between numbers. Then T is the familiar maximum
operator. We will return to this later.

End Examples .

Now let us investigate (0). We can rather straightforwardly deduce from
it that

. 1 1s idempotent, i.e. zle ==z
. 1 1s symmetric, i.e. Ty =ylx
° 1 Is assoclative, 1.e. el (ylz) = (=Ty)l=

Let us prove the symmetry. We appeal to Indirect Equality :

ly<z

{(0)}

r<z N y<z

{ A is symmetric }

y<z A z<z
= { (0) with z,y := y,z }
ylae < z,

and the conclusion follows. From this proof we see that 7| inherits its
symmetry from A . The same holds for 1{’s idempotence and {’s
associativity, as the reader may verify.

The next thing we do with (0) is to study it for some simple instantia-
tions. For instantiation z := y we find
rly <y
ON

z<y N y<y



{ < isreflexive }
r<y .

Thus we have derived the
Rule of Absorption

rly <y = z<y
End

Next, from (0) with z := 2]y , we find the

Rule of Expansion

y<zly
End

Using Mutual Inequality, we can combine the rules of Absorption and Ex-
pansion into

(1) rly=y = =<y (Va,y)
Remark  Almost every established treatment of lattice theory starts
from (1), but that is not nearly as nice as the treatment given here, be-

cause the pleasing symmetry exhibited by (0) is completely hidden.
End

So much for some simple instantiations of (0).

* *

Now the time has come to prove the beautiful?

Theorem 1  For reflexive and antisymmetric < |, and for T as defined
by (0), we have that

< is transitive

Proof We have to prove that for all =,y , and z
r<y Ny<z = z<z

Using (1), this we can rewrite as
zly=y N ylz=2z = zlz=2z ,

and we shall prove this latter by showing the consequent — zz=2z —
thereby using the antecedent — zlTy=2 A ylz=2 —:

2We owe this theorem to Edsger W. Dijkstra. It seems to be not generally known to
lattice theorists.



x|z

= { since y]z=z, from the antecedent }
] (y12)

= { 7 is associative }
(x1y) =

= { since 2 Jy=y , from the antecedent }
ylz

= { since y1z=2z, from the antecedent }

z
And we are done. (We ask the reader to notice that each individual step
in the above calculation is almost forced upon us. This is a very typical

characteristic of many a calculation.)
O

Now that we have obtained the transitivity of < | we shall feel free to
use 1t. For the sake of completeness we mention that a reflexive, antisym-
metric, and transitive relation is commonly called a partial order, and that
a universe equipped with a partial order is called a partially ordered set —a
“poset” for short—.

Definition (0) of 1 tells us when z]y<z . We now may ask when
z<zly . We leave to the reader to verify that

(2) < aly <« z<zx V z<y ,
and we investigate the converse :
z< ey = z<zV z<y
= { predicate calculus }
(z<2ly = z<2) V z<ely = z<y)
= { < is transitive }
rly<ez V zly<y

{ Rule of Absorption, twice }
y<z Vz<y .

For this last line to be valid for any x and y , we require that < be a
so-called linear or total order: by definition a total order is a partial order



with the additional property that, for all z and y, z<y V y<z
So, in combination with (2) we find

(3) for < a total order,
z<zly = z<zV z<y .

Furthermore, we deduce from (1) that

(4) for < a total order, operator | as defined by (0) satisfies

rly=z V zly=y .
(In words : 1 is a selector.)

* *

From here, we can proceed in many different directions. After all, lattice
theory i1s a huge mathematical terrain, with many ins and outs. We conclude
this introduction by confronting | with other functions.

We consider functions from and to our anonymous universe. For f such
a function we have, by definition,

e fismonotonic = (Ve,y: <y = fa<fuy)
e f distributes over T = (Va,y:: f(zly) = falfy)
We can now formulate the well-known, yet beautiful, theorem

(5) f distributes over 1 = f is monotonic .

Proof For any x and y , we observe

Jx< [y

= { M}
felfy =Ty

= { f distributes over | }
fxty) =Ty

= { Leibniz’s Rule }
ely=y

{1}

bl

<y

and the result follows from the outer two lines.

End

Small Intermezzo  (on proof design)



We would like to draw the reader’s attention to the fact that the above
proof —no matter how simple 1t is— displays a great economy of thought.
Let us analyze it in some detail. Given that f distributes over | , we
have to construct a calculation of the form

fe<fy...<...z<y

Right at the outset we can argue that such a calculation will require at
least four steps, viz.

a step to introduce symbol T , in order to be able to exploit the
given about f

e a step in which the given about f is actually used

e a step to eliminate symbol | again, because the target line =<y
does not mention it
e a step to eliminate symbol f | for which Leibniz’s Rule is our only

means so far.

Our proof contains precisely (these) four steps, so it cannot be shortened.
In fact, it was designed with these four considerations in mind. When we
wrote above “no matter how simple it is”, this may have sounded paradox-
ical, but it isn’t. On the contrary, the proof derives its simplicity from the
consciously considered shapes of the formulae and from the manipulative
possibilities available. Nowadays, many more proofs can be and are being
designed following such a procedure.

End Small Intermezzo .

A direct consequence of (5) concerns monotonicity properties of | .
Because function f defined by f.z =c¢7a , for whatever ¢, distributes over
| —as the reader may verify—, theorem (5) tells us that | is monotonic
in its second argument. Since T 1s symmetric, we therefore have

(6) T 1s monotonic in both arguments.

What about the converse of (5)7 Does it hold as well? In order to find
out, we try to prove

f(ely) = fxlfy
on the assumption that f is monotonic. We do this by Mutual Inequality:

falfy < flxly)
{ definition of 1, see (0) }
)

felf(zly) N fy<flzly



= { monotonicity of f , twice }
e<zly N y<zly

{ Rule of Expansion, twice }

true

f(xly) < falfy
= { @}

flxty) <fz VvV flzly) < fy
= { monotonicity of f , twice }
rly<z V zly<y

{ Rule of Absorption, twice }

y<z VvV zr<y ,

and the validity of this last line requires < to be total. Thus, we have
derived, in combination with (5),

(7) for < a total order,,
f 1s monotonic = f distributes over 7 .

* *

In lattice theory, one always introduces a companion to | ; it 18 |
(“down”). (In the standard literature we find | under entries like “inf”,
or “meet”, or “glb”.) Tt sees the light via

(8) z<wxly = z2<a AN z<y Vo, y,2),

i.e. in a way that is very similar to (0). Tt has very similar —dual— prop-
erties to | . In fact, it has the same properties if we simply flip < into
> ,and [into | : just compare (0) and (8). With this symbol dynamics
in mind the companion properties for | come for free. We mention

| 1s idempotent, symmetric, and associative
e y<xzl|ly = y<x  Absorption

ezx|ly<uy Contraction (= the dual of Expansion)

erly=y = y<z
szx|ly< s & x<zVy<Ls

e | is monotonic in both arguments

etcetera .
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Of course, we can now also investigate formulae containing both T and
| . We mention

zl(xly)y =2 , zl(zly)=2 , and
vly=v = vly=y

The proofs are left as exercises. We will not continue these investigations
now.

In case we take for < the usual order between real numbers, | is the
familiar minimum operator.

Let us, to conclude this story, consider the real numbers with the usual
order < . This is a total order. The foregoing little theory now grants us
quite a number of useful arithmetical results.

e In order to find out which part of the (z , y)-plane satisfies zTy < x4y ,
we simply calculate :
vy < xty
{ definition of f }
r<z+y N y<azty

= { arithmetic }
0<y A 0Lz
So the answer is: the first quadrant.

(Ask one of your colleagues or students to solve this little problem, and
observe how he does it. This could be a very instructive experiment.)

e Since function f | defined by f.z=c+z , is monotonic, we infer
from (7):

addition distributes over the maximum.

e Likewise, multiplication with a nonnegative number distributes over
the maximum.
e And also
92¢ 1y — 9z 12v

, and

(z1y)? =22 1y* (for z,y>0,0) , and

11



2l (xly) =(zl2)1(z1y)

e And now the reader should prove —with a minimal amount of case
analysis—

2ty < axy < 0 < aky

e Perhaps, we can also learn to handle absolute values more readily,
because we have |z | = T —= . Try to use it to prove the triangular
inequality

lety | < |z|[+ |yl .

o Etcetera.

This really was the beginning of lattice theory. Was it difficult? We hope
that most of our readers will say: no! We believe that elementary lattice
theory —which goes beyond this note— can and should be taught to rea-
sonable freshmen or, in any case, to sophomores, of computing science and
mathematics alike. Many of our colleagues, world-wide, especially comput-
ing science colleagues, will shudder at the thought, because lattice theory
is regarded far too abstract to be useful or to be teachable to the average
student. And abstract stands for frightening, doesn’t it? We really must
disagree with such a point of view, because —as we tried to show— the
game is completely under control by the use of a modest repertoire of simple
calculational rules. It is the peaceful calculational style which does away
with the fear for abstract things. And also, it is the peaceful calculational
style which lets the subject matter sink in much more profoundly than
would have been the case otherwise. If still in doubt, remember Newton
and Leibniz: they took away the deep difficulties attending the notions of
limits and derivatives by .. .proposing a symbolism to denote them and a
set of formula rewrite rules to manipulate and ...to master them. By now
these notions are high-school topics.
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