How to bound in Branch and Bound

“Branch and Bound”, in particular “Bound”, refers to a technique to
remove some of the inefficiency that almost inevitably attends most “Back-
tracking Algorithms”. Before dealing with that technique, we first spend a
few words on backtracking.

Backtracking algorithms usually enter the picture if a huge class of
things has to be explored in order to identify a subclass with certain prop-
erties. Typical examples of such huge classes are : all subsets of a given set,
all permutations of a number of objects, all partitions of a natural number,
all walks through a graph, all tic-tac-toe games, etc. .. If certain members
of such a class have to be identified, a safe procedure is to generate all
members and to check, for each of them individually, whether they have
the desired properties. The procedure is safe but its time complexity may
grow gigantically, and in many cases there is no cure.

* *

As a typical example, let us investigate the set V of all bitstrings of
length N | and let us assume that each bitstring # —of whatever length—
has a cost c.x associated with it. The problem we consider is to compute
the minimal cost of a bitstring in V| i.e. the value of

(lz:xeVica)

The backtracking strategy boils down to the introduction of a function
f on the set prefV of all bitstrings of length at most N | defined by

fu={lz:uHzeV: c(uttz)) , u€ prefV

(Symbol 4+ denotes catenation.)
Then the desired answer is the value of f.[] . (Symbol [] denotes the
empty string.)

The recursive scheme governing the computation of f is —proof

omitted—
e for #u=N , fu=cu
o for #u< N | fou = flut]0]) | fluH]1]) .



( #u stands for the length of w« , and [b] is the singleton list containing
element b .)

For the actual computation of f we introduce a function F(u :
list) : int with specification

precondition : u€ prefV

postcondition :  F = f.u

The code for a program to print target value f.[] is now straightforward.
It reads

func F(u : list) :int ;

[pre:  weprefV )
{post: F=fu}
if #u=N— F = cu
Il #u< N — F = F(u#[0])] F(u+[1])
fi

cnuf

; print (F([]))

As can be seen from the function definition, the recursion only comes to an
end when #u = N ,i.e. when a bitstring of full length has been generated.
In fact, the above program will generate all 2V elements of V exactly
once, and compute the cost of each of them. And if function ¢ is of a
whimsical nature, there is nothing we can do to improve on the program’s
efficiency.

In many practical circumstances, however, cost function ¢ is not whim-
sical at all. A very frequent situation is that we have

(0) cu<ec(utz)

a case that we shall now further investigate. The traditional jargon exploits
(0) by aremark like : “there is no need to extend string w if c.u is at least
as big as the c-value of any bitstring of length N that the program has
computed so far”. We will illustrate how to exploit (0) in a non-operational
manner.

We generalize function f into a function g defined by

gru=r]fu (re€lnt, ueprefV)



Here, parameter r is called the “bound”. In terms of ¢ , the desired
answer —which was f.[] —is

g.r.[] for any r satisfying f.[]<r

The great advantage of ¢ over f is that now the value of g.r.u can
sometimes be computed without recourse to a “laborious” calculation of
fou,viz. when 7| f.ou =7 | in which case g.r.u=r . Let us investigate
this condition :

rlfu=r

{ property of f }
r< fu

{ definition of f }
r<{l|lz:uHreV:c(utz))

= { property of f }
(Ve utz e Vir<c(utz))
= ON
(VerutzeVir<cu)
= { predicate calculus }
r<cu
As a result we find
. for r<cu , gru=r .
For the remaining case, viz. c.u <r, we resort to the recursive scheme for
f:
. for cu<r A #u=N |
RXT
= { definition of ¢ }
r] fu
= { #u=N } { schemefor f }

rlcu
= { cu<r }
c.u
. for cu<r A #Fu< N |
g.7.u



= { definition of ¢ }
r| fu
= { #u< N } { scheme for f }
el (Lu[0D) LS (ud[1])
= { | is associative }
(r L f-(u4t[0) | foCutt(1])
= { definition of ¢ }
g.r-(u+[0]) | f.(utt[1])
= { definition of ¢ }
g (g7 (udt[0]) . (u[1])
or —equivalently—

with ¢t = g.s.(u+[1])
and s =g.r.(u41[0])

gru =1 .

In summary, the recursive scheme governing the computation of ¢ 1is

for r<cu, g.ru =
for cu<r A #Fu=N, g.r.u = c.u
for cu<r A #Fu<N gru =1

where ¢t = g.s.(u+[1])
and s =g.r.(u410]) .

The corresponding program text that prints the target value reads
func G(r:int,u:string) : int ;
{ pre : u € prefV }
{post: G=gru}
if r<cu—G:=r
[ cu<r A #u=N—=0G = cu
[ cu<r A #u<N —
[ s,t:int;
s:= G(r,u+1[0])
;1= G(s,u+[1])



fi
cnuf

; “for some r such that f.[]<r, print(G(r,[]) 7 .

Remark  The difference between F and G isthat the recursion in G
also comes to an end when r<ec.u ,i.e. when c.u has become too large
or 7 has become small enough. Therefore, it is beneficial —even quite
beneficial — for the efficiency of the program, if the initial value for » in
the main call can be chosen as small as possible. And in many applications
one can indeed without too much effort find an initial estimate for » that
is quite close to target value f.[].

End Remark .

In practice, one usually wishes to compute a witness for the cheapest
solution as well. We shall now show how to do this for our program above.

In order to compute a cheapest bitstring in V' , we introduce a global
variable z of type string, and strengthen the postcondition of G with
the conjunct

z€V AN ez=G .

Because G(r,[]) asit occurs in the main call, is the desired minimal value,
the string z satisfying this additional postcondition is an appropriate
witness indeed.

Now we investigate how the three alternatives of function G can es-
tablish this new postcondition

. r<cu—G:=r:
(z€V A ecz=G) (G:=7r)
= { substitution }
2€V Nez=r |,

and because this does not follow from the guard r<c.u nor from G’s
precondition u € prefV, we decide that

() z€V AN cz=r
be a precondition of G as well.



. cu<r N #u=N —-G = cu:

(z€V A cz=0G) (G = cu)
= { substitution }
2z€V N cz=cu
= { Leibniz }
Z2€EV N z=u .

Because u € prefV —from pre of G — and because #u=N —from the
guard— we conclude that w €V | so that the above calculated precondition
z€V A z=u of G := c.u 1sreadily established by prefixing G = c.u
with statement z :=wu .

e cu<r A #u<N — block:

For the block in the third alternative we need no further adjustments of
G, as may follow from the annotation given below. Please observe that
the preassertion of each call of G exactly matches the required additional
precondition (*) of G .

[ s,t:int ;

{z€V A cz=r , from precondition (*) }
s:= G(r,u+1[0])

i {2z€V A ecz=s |, from added postcondition of G }
t:= G(s,u[1])

i {2z€V A ecz=t | from added postcondition of G }
G:=t
{z€V A c.z=G, asrequired }

End o.
Thus, our final program which computes a witness as well, has become

func G(r:int,u:string) : int ;
{pre: u€prefVAzEV A cz=r}
{post: G=gru A zeV Acz=G}
if r<cu—G:=r

[ cu<r A#u=N—z:=u;G = cu



[ cu<r A #u<N —
[ s,t:int;

s:= G(r,u+1[0])
;1= G(s,u+[1])
; G =t

fi
cnuf

; “for some 7 and z such that 2€V | cz=r  and f[]<r,
print(G(r,[])) ; print(z) ”

* *

Branch and Bound, and Backtracking, belong to what the field has
called “Combinatorial Algorithms. Those algorithms are usually presented
in a very operational manner. Backtracking is explained as tree traversal
and bounding as some sort of pruning. And the algorithms are presented
in terms of pictures rather than with formulae. We do not really like such
explanations, in particular if one realizes that the mathematical crux of
bounding, viz. the transition from function

fu
to r| fu

is so beautifully simple.

We learned this technique from our colleagues Anne Kaldewaij and Rob
Hoogerwoord. Kaldewaij in his book [?] has considerably raised the stan-
dards for dealing with Combinatorial Algorithms; and it should be pointed
out —for methodological reasons— that this rise of standard has become
possible by the emergence of nice calculational styles of functional program-
ming as, for instance, the one laid down in Hoogerwoord’s [?].



