Programming, Proving, and Calculation

W.H.J. Feijen and A.J.M. van Gasteren

April 12, 1999

Preface

It has been recognized for a long time now, that formalisms are indis-
pensable for the design of reliable, i.e. correct, programs. It has been
recognized also, however, that formalization in itself is not enough: we
must see to it that both the formalisms and the way in which they are
used are simple enough and clear enough to be useful and teachable.
This, in a nutshell, has been the primary aim of most of our work over
the years, and it constitutes the main theme of the present chapter.

Such use of formalism is, for instance, illustrated by the calculational
style in which the predicate calculus is used throughout the chapter.
After having used the calculational format for many years, both in
teaching and otherwise, we are convinced that it is a primary means
for combining clarity of exposition with economy of expression.

There are three sections to this chapter. The sections on sequential
(imperative) programming and multiprogramming each contain a small
collection of specimens of how we teach programming to our students
to date. They exemplify how sequential and parallel programs can
be derived from their specifications hand in hand with their proofs of
correctness. Here, the austerity and simplicity of the formalisms used,
viz. predicate calculus, Hoare-triple semantics and the theory of Owicki
and Gries, are of decisive importance. The section on calculational
mathematics is an illustration of how we think that students can be
made familiar with the calculational style.

As a prerequisite we assume the reader to be more or less familiar
with the predicate calculus and with Hoare triples and their use.

1

A little on calculational
mathematics

What associativity is about

We all know what it means for a binary operator A to be associative:

(a Ab)Ac = aA(bAc)

Now, if you interview people, asking them what associativity is really
about, one of the first answers you get is that it is allowed to omit the
parentheses and write

aAbAc

without introducing ambiguity. And this is right!

Next you may get the answer that thanks to the associativity it does
not matter whether the value of a A b A ¢ is computed from left to
right or from right to left. And you may get several other answers, but
hardly ever the one to be explained next.

* *

4 1. A LITTLE ON CALCULATIONAL MATHEMATICS

For people that calculate, the property of associativity may offer
very strong heuristic guidance in proof construction : if; in a calcula-
tion, the expression

aAbAc
enters the picture as
(a Ab)Ac

then the advice for the next step(s) is to focus on the subexpression

bAc in
aA(bAc) .

In our experience, this heuristic rule has worked well in a tremendous
number of cases. And if you come to think of it: of course, what else
could associativity be about?

* *

The proof of the pudding is in the eating, and we shall now present
the proof of a FANTASTIC theorem that our colleague Paul F. Hoogendijk
challenged us to prove one day. The theorem is FANTASTIC to the
extent that we have absolutely no idea what the mathematics involved
“means”.

In what follows, constant I" and dummies = and y are of type
Thing. Further, A and E map Things to Things, and, last but
not least, binary operator o , which maps two Things on a Thing,
is associative. In short, in the ensuing expressions there is no type

conflict.

Now, given (0) and (1)
(0) r=Ay = Tox=y (Va,y)
(1) E.x = A(xzol) (V)

we have to prove

(2) FxoAy = A(xoy) (Va,y)
Proof Property (0) is a so-called Galois Connection and the advice
is that we then always write down the corresponding cancellation rules
as well [?]. Here they are (instantiate (0) with = := Ay and y :=
['ox |, respectively, so as to make one side vacuously true) :
(3) FoAy=y (Vy)
(4) r = A(Toux) (V)
Now we tackle (2) and, for this occasion, we shall make the steps that
appeal to the associativity of o explicit.

EaxoAy = A(xoy)
{ (0) from left to right }
I'o(E.xoAly) = zoy

{ o is associative }
(ToE.xz)oAy = zoy

{ (1) to eliminate E }
(ToA.(zoT))o Ay = xoy

{ (3) with y := 2ol }

(zol) oAy = zoy

{ o is associative }
ro(l'oAy) = xoy
{33
Toy = xoy

{3

true

End Proof .

6 1. A LITTLE ON CALCULATIONAL MATHEMATICS
A very beginning of lattice theory

Let’s start at the very beginning.
A very good place to start.

Julie Andrews in The Sound of Music

For a large part, mathematics consists of exploring concepts and of in-
vestigating and proving their properties. The art of proving plays a
major role in this game. Since the advent of modern computing sci-
ence, it has become clear that in many branches of elementary math-
ematics, proofs can be beneficially rendered in a calculational format.
The benefits comprise greater precision and lucidity —without loss of
concision—, an enhanced view on how to separate one’s concerns, and
hence an improved economy of thought. Unfortunately, most textbooks
on elementary mathematical issues have not (yet) adopted such a cal-
culational style, so that yet another generation of young people will
receive a mathematical education without having experienced the joy
and usefulness of calculating. And this is a pity.

The purpose of this note is to transmit some of the flavour of cal-
culation. We have selected a topic from the very beginning of lattice
theory and we intend to present a treatment that can be read, under-
stood, and hopefully enjoyed by a reasonable university freshman.

* *

Our universe of discourse will be some fixed, anonymous set of things
on which a binary relation < (7 at most”) is defined. This relation
we postulate to be

o reflexive, i.e. r<uw (V)
o antisymmetric,i.e. a2<y A y<z = x=y (Va,y)

Remark In the standard literature we usually find the additional
postulate that < is

transitive, i.e. r<y ANy<z = z<z (Ya,y, z)

For the time being though, we do not need the transitivity of < .
Therefore, we do not introduce it now. And apart from that, it will —
as we shall see — enter the picture in a totally different way.

End Remark .

Equality of things is a very important concept to have. It is as
important as the notion of a function. Equality and functions are at
the heart of mathematics, and they are beautifully related by the

Rule of Leibniz
For any function f!, z=y = fa=fy
End

The two postulates that we have of < do not reveal very much
about equality; only the antisymmetry mentions it. Therefore, the first
thing to do is to collect some more facts concerning equality. The most
common one is the

Rule of Mutual Inequality
r=y = z<y ANy<z
End

It is an immediate restatement of < ’s reflexivity and antisymmetry.

A very useful but less common statement about equality is the so-

called
Rule of Indirect Equality

r=y = (Vzu z<ax=z<y)
End

Let us prove it. We prove it by mutual implication. (In our jargon we
refer to the implication LHS = RHS from left to right by “ping” and
to RHS= LHS by “pong”.)

Proof of ping

r=y = (Vzu z2<z=2<y)

'We denote function application by an infix dot.

8 1. A LITTLE ON CALCULATIONAL MATHEMATICS

{ (P=) distributes over ¥ }
(Ve x=y = (z<x=2<y))
{ Rule of Leibniz, see below }

true

The function [involved in this application is the boolean function
given by f.a = z<a .
End

Proof of pong We have to prove

(Vzuz<az=z<y) = ax=y ,
and we do so by setting up a weakening chain of predicates that begins
with the antecedent and ends with the consequent. Notice that in this
chain we will quite likely have to refer to the antisymmetry of <
because this is the only property of < that mentions the =-symbol;
and we have not used it in the ping-part yet. (The latter remark is a
very simple example of the kind of bookkeeping that has proven to be
very useful in proof design.) Here is the chain

(Vzu z<az = z<y)

= { instantiate with z:=2z and with z:=y }

(z<x=2z2<y) AN (y<z =y<y)
{ reflexivity of < '}

r<y AN y<uz

= { antisymmetry of < }

T =1y

Notice that the first step —the instantiation— is not brilliant at all:
the first line contains symbol V and the target line does not, so that
somewhere along the way we must eliminate V. In fact, about the only
rule from the predicate calculus with which one can eliminate the uni-
versal quantifier V. is the rule of instantiation. Once we are aware of
this, the step is no longer a surprise. Furthermore, there is not much

we can instantiate z with, viz. just = and y ; and we did both in
order to make the next line as strong as possible, which is beneficial if
one has to construct a weakening chain.

End Proof of pong .

The rule of Indirect Equality has a companion, also called the Rule
of Indirect Equality. It reads
r=y = (Vzua<z=y<z)

The difference is the side of the < -symbol at which z and y reside.
Which of the two is to be used depends on the particular application.

* *

So much for < and for = in our universe. We now enter lattice
theory by postulating that in our universe the equation in p

p: (Vzu p<z = 2<z ANy<z)

has, for each = and y , at least one solution. (The inexperienced
reader should not feel daunted here: in case our universe is just the
universe of real numbers with the usual < -relation, the maximum of
xz and y may be recognized as a good candidate for p .)

The first thing we do is to show that the equation has at most one
solution. This is done by showing p=g¢g , for p and ¢ solutions of the
equation. Here, one of the rules of Indirect Equality comes in handy:
for any z , we have

p<z

{ p is a solution }

r<z ANy<z

{ ¢ is asolution }

g<z

9

and, hence, p=¢ . So our equation has exactly one solution for each
x and y. Therefore, that solution is a function of 2 and y , which
we propose to denote by Ty (2 “up”y). In summary, we have the

10 1. A LITTLE ON CALCULATIONAL MATHEMATICS

beautiful
(0) rTy<z = <z ANy<z (Ya,y, z)

(In the standard literature we find T under entries like “sup” or “join”

or “lub”.)

Examples

e A well-known instance of (0) can be found in set theory. If we
take set inclusion C as an instance of < —it is reflexive and
antisymmetricl-— , set union U is the corresponding T . Indeed,
we have for all sets =,y , and 2z,

zUy Cz = 2Cz AN yCz

e Also, if we take set containment O for < ., set intersection is

the corresponding T . Indeed,

9

rNy2z = 22z Ny2z .

e Another well-known instance is in the predicate calculus where
we have

[zVy=2z2] = [z2=2z]AN]y=2z] , and
[zAy<=z] = [z<z]AN][y<sz].
e From number theory we know the reflexive, antisymmetric rela-

tion denoted | (“divides”). Now, the least common multiple of
x and y can see the light via

(xlemy) |z = x|z ANylz
and the greatest common divisor of = and y by
z(vgedy) = z|lz A z|y
Both are instances of (0). (How?)
e But probably the best-known instance of (0) is when we take for

< the usual order between numbers. Then 7T is the familiar
maximum operator. We will return to this later.

11

End

Now let us investigate (0). We can rather straightforwardly deduce
from it that

° T is idempotent, ie. aTx = x
° T is symmetric,ie. zTy = yTa
o T is associative, i.e. xT(yTz) = (zTy)Tz .

Let us prove the symmetry. We appeal to Indirect Equality :
ey <z

{ (0)}

r<z ANy<z

{ A is symmetric }
y<z A x<z

(O withr,y = y.o)
yla < 2

and the conclusion follows. From this proof we see that T inherits its
symmetry from A . The same holds for 1’s idempotence and 1’s
associativity, as the reader may verify.

The next thing we do with (0) is to study it for some simple instan-
tiations. For instantiation z :=y we find

ey <y
{ (0}
Ty AN ysy
{ < isreflexive }

<y
Thus we have derived the
Rule of Absorption
Ty <y = z<y

12 1. A LITTLE ON CALCULATIONAL MATHEMATICS

End
Next, from (0) with z := 2Ty , we find the
Rule of Expansion
y < zly
End

Using Mutual Inequality, we can combine the rules of Absorption and
Expansion into

(1) zly=y = 2<y (Va,y)
Remark Almost every established treatment of lattice theory starts
from (1), but that is not nearly as nice as the treatment given here,

because the pleasing symmetry exhibited by (0) is completely hidden.
End

So much for some simple instantiations of (0).

* *

Now the time has come to prove the beautiful?
Theorem For reflexive and antisymmetric < , and for T as defined
by (0), we have that

< is transitive .

Proof = We have to prove that for all =,y ,and =z
r<y Ay<z = z<z .
Using (1), this we can rewrite as
xTy=y N ylz=2z = zlz=z ,
and we shall prove this latter by showing the consequent — zT2z=2 —

thereby using the antecedent — xTy=2 A yTz=2 —:

xTz

2We owe this theorem to Edsger W. Dijkstra. Tt seems to be not generally known
to lattice theorists.

13

= { since yTz=z, from the antecedent }

1 (y12)

= { 1 is associative }

(zTy)T=

= { since 2 Ty =y , from the antecedent }

yl=
= { since y T z==z, from the antecedent }
z .
And we are done. (We ask the reader to notice that each individual

step in the above calculation is almost forced upon us. This is a very
typical characteristic of many a calculation.)

End

Now that we have obtained the transitivity of <, we shall feel free
to use it. For the sake of completeness we mention that a reflexive, an-
tisymmetric, and transitive relation is commonly called a partial order,
and that a universe equipped with a partial order is called a partially
ordered set —a “poset” for short—.

* *

Definition (0) of T tells us when 2Ty <z . We now may ask when
z<zTy . We leave to the reader to verify that

(2) z<aly « z<zx2 V z<y ,

and we investigate the converse :

z<azly = z<zx V z<y

{ predicate calculus }
(z<z2ly = z<2) V (z<2Ty = z<y)
= { <is transitive }
rly<z V xly<y

14 1. A LITTLE ON CALCULATIONAL MATHEMATICS

{ Rule of Absorption, twice }
y<z V <y .

For this last line to be valid for any « and y , we require that
< be a so-called linear or total order: by definition a total order
is a partial order with the additional property that, for all = and
y, <y Vy<z

So, in combination with (2) we find

(3) for < a total order,
z<aly = z<a V z<y .

Furthermore, we deduce from (1) that

(4) for < a total order, operator T as defined by (0) satisfies

zly=a V aly=y .
(In words : T is a selector.)

* *

From here, we can proceed in many different directions. After all,
lattice theory is a huge mathematical terrain, with many ins and outs.
We conclude this introduction by confronting T with other functions.

We consider functions from and to our anonymous universe. For f
such a function we have, by definition,

e fismonotonic = (Va,y: <y = fa<fy)

o [distributes over T = (Va,y: f(zTy) = faTfy)

We can now formulate the well-known, yet beautiful, theorem
(5) f distributes over T = f is monotonic .

Proof For any x and y , we observe
fa< [y

{ (1)}
fally =Ty

15

{ f distributes over T }
f@Ty) =Ty
= { Leibniz’s Rule }
rTy=y

{ ()}

9

<y

and the result follows from the outer two lines.

End

Small Intermezzo (on proof design)

We would like to draw the reader’s attention to the fact that the
above proof —no matter how simple it is— displays a great economy
of thought. Let us analyze it in some detail. Given that f distributes
over T , we have to construct a calculation of the form

falfy...<= ...y

Right at the outset we can argue that such a calculation will require at
least four steps, viz.

a step to introduce symbol T , in order to be able to exploit the
given about f

a step in which the given about f is actually used

a step to eliminate symbol T again, because the target line = <y
does not mention it

a step to eliminate symbol f , for which Leibniz’s Rule is our
only means so far.

Our proof contains precisely (these) four steps, so it cannot be short-
ened. In fact, it was designed with these four considerations in mind.
When we wrote above “no matter how simple it is”, this may have
sounded paradoxical, but it isn’t. On the contrary, the proof derives its

16 1. A LITTLE ON CALCULATIONAL MATHEMATICS

simplicity from the consciously considered shapes of the formulae and
from the manipulative possibilities available. Nowadays, many more
proofs can be and are being designed following such a procedure.
End Small Intermezzo .

A direct consequence of (5) concerns monotonicity properties of T .
Because function f defined by f.x=cTa ,for whatever ¢, distributes
over T —as the reader may verify—, theorem (5) tells us that T is
monotonic in its second argument. Since T is symmetric, we therefore
have

(6) T is monotonic in both arguments.

What about the converse of (5)7 Does it hold as well? In order to
find out, we try to prove

f(xTy) = falfy
on the assumption that f is monotonic. We do this by Mutual In-
equality:

falfy < f(xTy)

{ definition of 1, see (0) }
fae<flzly) N fy<f(zTy)
= { monotonicity of f , twice }

r<xly N y<axly

{ Rule of Expansion, twice }

true

fxTy) < faTfy
= { (2) }

fEty) <fa v f(xTy)<fy
= { monotonicity of f , twice }
zly<z V zly<y

{ Rule of Absorption, twice }

17

y<z V z<y ,

and the validity of this last line requires < to be total. Thus, we have
derived, in combination with (5),

(7) for < a total order,

f 1s monotonic = f distributes over T .

* *

In lattice theory, one always introduces a companion to T ; it is |
(“down”). (In the standard literature we find | under entries like
“Inf”, or “meet”, or “glb”.) It sees the light via

(8) z<zly = z2<z N z<y (Ya,y, 2),

i.e. in a way that is very similar to (0). It has very similar —dual—
properties to T . In fact, it has the same properties if we simply flip <
into >, and Tinto | : just compare (0) and (8). With this symbol
dynamics in mind the companion properties for | come for free. We
mention

e | isidempotent, symmetric, and associative

e y< x|y = y<ax Absorption

xly <y Contraction (= the dual of Expansion)

ezxly=y = y<u

rly <z & <z Vy<lz
e | is monotonic in both arguments

e ctcetera .

Of course, we can now also investigate formulae containing both T
and | . We mention

el(zTy)=2 , zT(zxly)==2 , and

18 1. A LITTLE ON CALCULATIONAL MATHEMATICS

rly=z = xTy=y

The proofs are left as exercises. We will not continue these investiga-
tions now.

In case we take for < the usual order between real numbers, | is
the familiar minimum operator.

* *

Let us, to conclude this story, consider the real numbers with the usual
order <. This is a total order. The foregoing little theory now grants
us quite a number of useful arithmetical results.

e Inorder to find out which part of the (z,y)-plane satisfies xTy < x4y ,
we simply calculate :

vy < oty

{ definition of [}
r<zty N y<az+ty

{ arithmetic }
0<y N 0Lz

So the answer is: the first quadrant.

(Ask one of your colleagues or students to solve this little problem,
and observe how he does it. This could be a very instructive
experiment.)

e Since function f , defined by f.xr=c+x ., is monotonic, we
infer from (7):

addition distributes over the maximum.

o Likewise, multiplication with a nonnegative number distributes
over the maximum.

e And also

19

271y = 92712Y and

(Ty)? =2"Ty* (for 2,y>0,0) , and

zl(@xTy)=(zl2)T(21y)

e And now the reader should prove —with a minimal amount of
case analysis—

22 y? < xxy &= 0 < aky

e Perhaps, we can also learn to handle absolute values more readily,
because we have | # | =xT—z . Try to use it to prove the
triangular inequality

oty | < |z|[+]y] .

o Ktcetera.

This really was the beginning of lattice theory. Was it difficult? We
hope that most of our readers will say: no! We believe that elemen-
tary lattice theory —which goes beyond this note— can and should
be taught to reasonable freshmen or, in any case, to sophomores, of
computing science and mathematics alike. Many of our colleagues,
world-wide, especially computing science colleagues, will shudder at
the thought, because lattice theory is regarded far too abstract to be
useful or to be teachable to the average student. And abstract stands
for frightening, doesn’t it?7 We really must disagree with such a point
of view, because —as we tried to show— the game is completely under
control by the use of a modest repertoire of simple calculational rules.
It is the peaceful calculational style which does away with the fear for
abstract things. And also, it is the peaceful calculational style which
lets the subject matter sink in much more profoundly than would have
been the case otherwise. If still in doubt, remember Newton and Leib-
niz: they took away the deep difficulties attending the notions of limits

20 1. A LITTLE ON CALCULATIONAL MATHEMATICS

and derivatives by ...proposing a symbolism to denote them and a set
of formula rewrite rules to manipulate and ...to master them. By now
these notions are high-school topics.

21

A high-tech calculation

As members of a High-Tech Society, we sometimes feel obliged to em-
bark on high-tech calculations. Here is one.

When we have a tedious calculation of the form

r=y

Paxy

there is no need to redo all the work if we want to strengthen the last
line with conjunct P.y.z . We exploit symmetry, and simply continue
our calculation with a step indicated

{ Symmetry)
Pxzy N Py.x .
The simplest application of the above principle is
T=y (0)
= { calculus }
r<y (1)

{ Symmetry }
r<y N y<sw

{ calculus }
r=y (2)
Comparing lines (0), (1), and (2) we have shown
r=y = <y .
And that is what we call High Technology.

22

1.

A LITTLE ON CALCULATIONAL MATHEMATICS

2

From sequential
programming

Around Bresenham

We consider the task of plotting a curve in the Euclidean plane by mark-
ing pixels from a grid covering that plane. More specifically, given a
real-valued function f on some finite interval, we wish to mark, for each
integer x in that interval,, a pixel with integer coordinates (x,y) such
that y 1is as close to f.r as possible. This latter requirement can be
formulated as

or, equivalently, as the conjunction of ()a and @b , given by
Qi y<i+fe

) 1
Qb: —5tfe <y .

We furthermore assume that f satisfies a kind of “smoothness” prop-
erty on the interval, to wit

0 < filz+l)—fx <1,

which can also be formulated as the conjunction of Da and Db , given

by
Da: fox < f(x41)

23

24 2. FROM SEQUENTIAL PROGRAMMING

Db: fle41) < 14 fa .

It is this property that suggests that the curve be plotted in the order of
increasing (or decreasing) value of 2 , because the pixel to be marked
for x+4+1 is not too far away from the pixel to be marked for =z
(thus yielding the nicer picture). Thus, with the interval given by two
integers A and B, A<B ,we will consider a marking program of
the form

r:=A
; dox# B — Mark (v,y) ;2 := 2+1 od

and regard it as our task to extend this program with operations on y
such that Qa A Qb is an invariant of the repetition.

The reader may recognize the above problem statement as one from
the world of graphics. We wish to emphasize, however, that in this
essay neither this specific problem nor its origin is of much concern to us
here. We are concerned with the development of a program meeting the
specification, by paying attention to uninterpreted formulae only, i.e.
without further reference —mental or otherwise— to pixels, pictures,
or whatever.

The program above requires two adaptations, one for the initialization
of y and one for y ’s adjustment in the step. As for the initialization,
we cannot say much without taking specificities of f into account. For
the time being, we may record it as

ry: r=A N Qa N Qb

For the step, we consider an adaptation of the form z,y = x+1,y+¢ ,
and try to find out for what integer values of ¢ this maintains Qa A Qb .
We will deal with the invariances of Qa and @b in turn.

(Qa’s invariance
The weakest precondition for x,y = ax+1,y+¢& to establish Qa is

G.&: y+& < %—I—f.(:z;—l—l)

25

We now investigate for which (integer) values of ¢ the required precon-

dition G.¢ isimplied by the actual precondition, whichis Qa A Qb A Da A Db .

To that end, we observe
y+& < S+ f(x+1)

= { using Qa and the transitivity of < }
T+ fa4é < 4 f(x4])

{ arithmetic }
fa+& < fatl)
= { using Da and the transitivity of < }
Ja+l < fua

{ arithmetic }
£<0 .

As a result, statement x.,y := x+1,y+¢& “automatically” maintains
Qa for £ <0, but for other valuse of ¢ the statement had better be
guarded by G.£ .

Now we expect that, in view of the properties D of f , we will
never need to consider increments of y —i.e. values for ¢ — outside
the range 0,1 . This expectation will turn out to be true, and,
anticipating that, we can summarize the above analysis as

{Qa) {Da)
if G1—ax,y == x+1,y+1

| true — 2 := z+1 (ie. x,y := x+1,y+40)
fi

{Qa)

End (Qa’s invariance .

QV's invariance
The weakest precondition for x.,y := x+1,y+¢ to establish Qb is

26 2. FROM SEQUENTIAL PROGRAMMING

HE —i4flatl) < y+e
As before, we investigate for which values of ¢ this is implied by the
actual precondition:

—3+ fla+]) < g+
= { using @b and the transitivity of < }
— s+ f(x+1) < =34 fa+¢
{ arithmetic }
flz+1) < faa+
= { using Db and the transitivity of < }
1+ fx < faa+¢
= { arithmetic }
1<¢

In summary, we derived
{ @b} { Db}
if true — x,y = a+1,y+1
| HO— 2z := 2+1
fi
[Qb)

End Qs invariance .

Now we combine the two fragments above into a single program
fragment maintaining both Qa and Qb :

{QaNQb}{Dan Db}
if G1—ax,y == x+1,y+1
| HO— 2z := 2+1

fi

{QaAQh)

27

The only remaining proof obligation is to verify that this program frag-
ment does not suffer from the danger of abortion, i.e. we have to check
that the disjunction of the guards is implied by the precondition of the
if-statement. In order to examine this we expand the guards (while
simplifying them):

G.1: y—l—% < fu(x41)
H.0: fz41) < y+1

and, lo and behold, we have G.1V H.0 | so that there is no danger
of abortion. (At the same time, this also confirms our expectation that
we need not consider increments of y beyond 0or 1.)

Collecting the pieces, we have derived that the program depicted in
Figure 0 below plots the curve as demanded.

* *

{DanDb}{A<B}
ry: r=A N Qa N Qb
{inv. Qa A Qb }
; do x#B —
Mark (x,y)
if Gl — 2,y == o+1,y+1
| HO— 2z := 2+1
fi
od

Figure 0

So much for the development of this algorithm.

* *

28 2. FROM SEQUENTIAL PROGRAMMING

There is, however, a little bit more to be said. The evaluation of the
guards G.1 and H.0 will, in general, demand floating-point arith-
metic, and for many functions f there is no escaping it. But for some
classes of curves —most notoriously the conic sections— there is an op-
portunity to transform the algorithm so that its execution will require
integer arithmetic only. And this is sometimes considered an advan-
tage. We next show such a transformation for the case of a (specific)
hyperbola.

Consider the curve given by
0<fx A (fa)—a?=C

for some (large) positive integer constant C . It is the “positive
branch” of a hyperbola. We wish to plot it on the interval [A,B) ,
with A and B integers satisfying 0< A< B . The reader may verify
that, on this interval, f satisfies properties Da and Db .

We first expand guard G.1 , seeking to express it with integer
subexpressions only:

G.1
{ definition of G}
y+1 < 5+ f(2+1)
{ arithmetic }
y+y < [(z+1)
{ both sides are nonnegative; for y+31 thisisso by Qb }
(y+3)* < (f(a+1))?
{ arithmetic and definition of f }
v 4y+i < (2+1)°+C
{ arithmetic }
< 2?4 2x—y'—y+C+1

N

{ o by P given below }
<h

N

For the “complementary” guard H.0 , we find

29

HO = 1>h

The reason for introducing the additional invariant
P: h = 224+ 22—y’ —y+C+1 ,

is that the repeated updating of % is assumed to be less costly than the
repeated evaluation of P ’s right-hand side for the successive values of
x and y . Furthermore note that A is an integer —as demanded— .
Now we have almost succeeded in expressing .1 and H.0 in

1
. Z)
Because h is an integer, we can eliminate this i at a bargain because

of

terms of integer expressions only, be it for the occurrence of that

T<h=1<h
and

1>h =02>h .
Thus, we find

Gl=1<h and HO=0>h

We now give the final program at once, leaving the standard proof
of the invariance of P to the reader. (All that is needed for this is the
axiom of assignment.)

z,y = A, round.(sqrt.(A*+C))
i h o= 22 F 2 —y?—y + C + 1
; do x#B —
Mark (x,y)
cif 1<h — a2,y h = a+1 ,y+1 ., h + 2%z — 2%y + 1
| 0>h—a,h == a+1,h+ 2%z + 3
fi
od

The program text can be further embellished, but we leave it at this.
For some interesting details concerning the marking we refer to, for
instance, [?].

30 2. FROM SEQUENTIAL PROGRAMMING

The reader that feels like constructing a plotting algorithm himself,
may try to do so for, say, a straight line segment in the “first octant” of
the plane. The exercise can be quite rewarding, since he will find himself
designing the famous algorithm that was invented by J.E. Bresenham

[7].
Acknowledgement

We thank Rob Hoogerwoord and Anne Kaldewaij for their comments.

Postscript

This note was written in 1990, because we felt intrigued but not satisfied

by [?].

31
How to bound in Branch and Bound

“Branch and Bound”, in particular “Bound”, refers to a technique to
remove some of the inefficiency that almost inevitably attends most
“Backtracking Algorithms”. Before dealing with that technique, we
first spend a few words on backtracking.

Backtracking algorithms usually enter the picture if a huge class of
things has to be explored in order to identify a subclass with certain
properties. Typical examples of such huge classes are : all subsets of
a given set, all permutations of a number of objects, all partitions of a
natural number, all walks through a graph, all tic-tac-toe games, etc. ..
If certain members of such a class have to be identified, a safe procedure
is to generate all members and to check, for each of them individually,
whether they have the desired properties. The procedure is safe but its
time complexity may grow gigantically, and in many cases there is no
cure.

As a typical example, let us investigate the set V' of all bitstrings
of length N , and let us assume that each bitstring » —of whatever
length— has a cost c.z associated with it. The problem we consider
is to compute the minimal cost of a bitstring in V', i.e. the value of

(lx:xeVica)

The backtracking strategy boils down to the introduction of a func-
tion f on the set prefV of all bitstrings of length at most N | defined
by

fu={(la:utaxeV: c(utz)) , ucprefV
(Symbol H denotes catenation.)
Then the desired answer is the value of f.[] . (Symbol [] denotes

the empty string.)

The recursive scheme governing the computation of f is —proof
omitted—

o for #u=N |, fau=cu

32 2. FROM SEQUENTIAL PROGRAMMING

o for #u< N | fou= flu0]) | flut]1]) .

(#u stands for the length of u , and [b] is the singleton list containing
element b .)

For the actual computation of f we introduce a function F(u :
list) : int with specification

precondition : u€prefV

postcondition : F=fu .

The code for a program to print target value f.[] is now straightfor-
ward. It reads

func F(u : list) :int ;
{ pre : u€prefV }
{post: F=fu}
if #u=N — F := cu
| #u< N — F = Fu#[0])| F(u+[1])
fi

cnuf

- print (F([])

As can be seen from the function definition, the recursion only comes
to an end when #wu = N | i.e. when a bitstring of full length has been
generated. In fact, the above program will generate all 2V elements of
V' exactly once, and compute the cost of each of them. And if function
¢ 1is of a whimsical nature, there is nothing we can do to improve on
the program’s efficiency.

In many practical circumstances, however, cost function ¢ is not
whimsical at all. A very frequent situation is that we have

(0) cu<ec(uttax) ,

33

a case that we shall now further investigate. The traditional jargon
exploits (0) by a remark like : “there is no need to extend string w if
c.u 18 at least as big as the ¢-value of any bitstring of length N that
the program has computed so far”. We will illustrate how to exploit
(0) in a non-operational manner.

We generalize function f into a function ¢ defined by
gru=r|fu (relnt , ueprefV)

Here, parameter r is called the “bound”. In terms of ¢ , the desired
answer —which was f.[] — is

g.r.[] for any r satisfying f.[]<r

The great advantage of g over f isthat now the value of ¢g.r.u can
sometimes be computed without recourse to a “laborious” calculation

of fuu, viz. when r| fiu=r ,in which case g¢.r.u=r . Let us

b
investigate this condition :

rlfau=r

{ property of f }
r<fu

{ definition of [}
r<(la:utreV:c(utz))

{ property of f }
(Ve:utdazeVir<ec(utax))
= {0

(VerutazeVir<cu)
= { predicate calculus }

r<cu .

As a result we find
° for r<cu , gru=r

For the remaining case, viz. c.u <r, we resort to the recursive scheme

for f:

34 2. FROM SEQUENTIAL PROGRAMMING

° for cu<r AN #u=N |
g.r.au
= { definition of ¢ }
rl fu
= { #u=N } { schemefor f }
rlecu
= { cu<r }
cu .
o for cu<r A #u< N |,
g.r.au
= { definition of ¢ }
rl fu

= { #u< N } { schemefor [}
rl (F(uAR0]) L (u (1))

= { | is associative }
(r L f(u[0)) L f(u[1])

= { definition of ¢ }
g-r-(u4[0]) | f.(ut1])

= { definition of ¢ }
g-(g.r (ud[0])) . (u+[1])

or —equivalently—

with ¢t = g.s.(uH[1])
and s =g.r.(uH]0])

gru =1 .

In summary, the recursive scheme governing the computation of ¢ is

35

o for r<ecu, g.r.au =
° for cu<r A #u=N, g.r.au = c.u
o for cu<r A #Fu<N, grau =1

where t = g.s.(u+[1])
and s =g.r.(uH[0]) .

The corresponding program text that prints the target value reads
func G(r:int,u:string) : int ;
(pre: ueprefV)
{post: G=gru}
if r<cu—G:=r
| cu<r AN #u=N — G := cu
| cu<r A #u<N —
| s,t:int;
s:= G(r,u+[0])
1= Gls,u 1))
s Gi=t

fi
cnuf

; “for some r such that f.[]<r, print(G(r,[])) 7 .

Remark The difference between F and G is that the recursion
in G also comes to an end when r<c.u ,i.e. when c.u has become
too large or r has become small enough. Therefore, it is beneficial
—even quite beneficial— for the efficiency of the program, if the initial
value for r in the main call can be chosen as small as possible. And
in many applications one can indeed without too much effort find an
initial estimate for r that is quite close to target value f.[].

End Remark .

36 2. FROM SEQUENTIAL PROGRAMMING

In practice, one usually wishes to compute a witness for the cheapest
solution as well. We shall now show how to do this for our program
above.

In order to compute a cheapest bitstring in V', we introduce a
global variable z of type string, and strengthen the postcondition of
(G with the conjunct

zeV N cz=G .

Because G(r,[]) as it occurs in the main call, is the desired mini-
mal value, the string z satisfying this additional postcondition is an
appropriate witness indeed.

Now we investigate how the three alternatives of function G can
establish this new postcondition

° r<ecu—G:=r:
(z6€V A cz=G) (G:=r)
{ substitution }

zeV A cz=r |

and because this does not follow from the guard r <c.u nor from G’s
precondition u€prefV, we decide that

(%) z2€V N cz=r
be a precondition of G as well.

o cu<r N #u=N — G = cu :

(z6€V A cz=G) (G = cu)
{ substitution }

2V A c.z=c.u
= { Leibniz }
ze€V A z=u

37

Because ué€prefV —from pre of G — and because #u=N
from the guard— we conclude that u€V | so that the above calculated
precondition z€V A z=u of G := cu is readily established by
prefixing G := c.u with statement z:=u .

o cu<r A #u<N — block:
For the block in the third alternative we need no further adjustments
of (G, as may follow from the annotation given below. Please observe
that the preassertion of each call of ' exactly matches the required
additional precondition () of G .

[s,t:int ;

{2zeV A cz=r , from precondition (*) }
s:= G(r,u4[0])

i {26V A c.z=s , from added postcondition of G }
t:=G(s,u+[1])

i {26V A ecz=t | from added postcondition of G }
G:=t
{2V A cz=G | as required }

End eo.

Thus, our final program which computes a witness as well, has be-
come

func G(r:int,u:string) : int ;
{pre: wu€prefVAzeV A cz=r}
{post: G=gru A zeV AN cz=G}
if r<cu—G:=r
| cu<r AN #u=N —z:=u; G = cu
| cu<r AN #u<N —

38 2. FROM SEQUENTIAL PROGRAMMING

| s,t:int;
s:= G(r,u+[0])
;b= G(s,u+[1])
s Gi=t

fi
cnuf

; “for some r and z such that zeV | cz=r and f.[]<r,
print(G(r,[])) ; print(z) ”

* *

Branch and Bound, and Backtracking, belong to what the field has
called “Combinatorial Algorithms. Those algorithms are usually pre-
sented in a very operational manner. Backtracking is explained as tree
traversal and bounding as some sort of pruning. And the algorithms
are presented in terms of pictures rather than with formulae. We do
not really like such explanations, in particular if one realizes that the
mathematical crux of bounding, viz. the transition from function

fu
to rl fu

is so beautifully simple.

We learned this technique from our colleagues Anne Kaldewaij and
Rob Hoogerwoord. Kaldewaij in his book [?] has considerably raised
the standards for dealing with Combinatorial Algorithms, and it should
be pointed out —for methodological reasons— that this rise of stan-
dard has become possible by the emergence of nice calculational styles of
functional programming as, for instance, the one laid down in Hooger-
woord’s [?].

39

The Binary Search revisited

The Binary search is a beautiful, simple, efficient, and —hence— well-
known little algorithm for searching. Most computing scientists and
programmers will be familiar with it. Unfortunately, there are two
observations that cast some doubt on the level of familiarity. First,
many programmers still have a relatively hard time writing down cor-
rect program code for it, this in spite of the fact that it concerns an
algorithm of just a few lines. Second, most programmers believe that
the algorithm only works for searching in sorted arrays, which reveals a
misunderstanding. (A long time ago, we ourselves, too, used to sell the
binary search to our students by first drawing an analogy with search-
ing for a word in a dictionary. Afterwards, we learned to judge this
as an educational blunder.) The purpose of this note is to remedy the
situation.

Our starting point is that we are given a function or an array f[a..b]
, a<b, of elements of some kind, such that the two outer elements f.a
and f.b are in some relation 7 to each other, a fact that we denote
by aZb . The problem is to find a pair of neighbouring elements
of f that are in the relation 7 . (Of course, such a pair need not
exist; we will address this problem later on.) More precisely, we wish
to construct a program with postcondition

R: a<x N x<b A axZ(x+l)
on the premise that the precondition implies
a<b N aZb .

The procedure for constructing such a program is quite standard. In
view of the shapes of the pre- and the postcondition we try to establish
R by means of a repetition with invariants P0 and P1 , given by

PO: a<z N x<y N y<b
P1: xZy

and with bound function y—x . Our program thus gets the form

40 2. FROM SEQUENTIAL PROGRAMMING

{a<b N aZb}
x,y = a,b
{inv. POAP1 } { bnd y—z }
; doy#x+1 — shrink y—z under invariance of PO A P1 od
{R} .
And indeed, by construction, POA Pl Ay=z+1 = R .

For the shrinking of y—x in the body of the repetition we investi-
gate an increase of x and a decrease of y. (We do so since our problem
is highly symmetric in @ and y .) On the assumption that = <h ,
for some h still to be determined, assignment z := h increases =z .
We now find out under what circumstances this assignment maintains
PO A P1 . As for the invariance of P0 , we observe

PO (2:=h)
{ definition of PO }
a<h A h<y A y<b

{ PO and x<h are preconditions to x:=h ,
hence a<h A y<b }
h<y .

So we require h to satisfy not just x<h but also h<y , and hence

r<h N h<y .

Note Fortunately, such an h exists because from PO and the
guard y=#ax+1 of the repetition we conclude that 242 <y .
End

Having settled the invariance of P0 under x:=h , we now turn our
attention to P1 . We observe

Pl (x:=h)
{ definition of P1 }
hZy .

41

Since this latter condition does not in general follow from P1 or PO,
we plug it in as a guard to = :=h .

We next address a decrease of y . Because we already have an h
such that h <y , we propose y := h . By the problem’s symmetry in
x and y , our program now becomes

{a<bANaZb}
x,y = a,b
{inv. POAP1 }{ bnd y—z }
i do y#a+l —
{a+2<y}
“h such that z<hAh<y ”
s if hZy —a:=h
| 2Zh—y:=h
fi
od
{ R}
Prog0
Remains the question of termination of this program. It does terminate
if we can ensure that at least one of the guards of the if-statement

evaluates to true. This will in general not be the case, but it is if
relation 7 satisfies

(0) xZy = hZy N xZh (Ya,y, h)
(The antecedent is the valid precondition P1 ; the consequent is the
disjunction of the guards.)

While adopting this condition on 7 , we can even ensure very fast
termination by choosing h to be equal to (x+4y) div 2 , which thanks

to precondition 42 <y indeed establishes xz<h A h<y . And
thus, binary search is born!

42 2. FROM SEQUENTIAL PROGRAMMING

Our program computes an z satisfying postcondition R . Of
course, there may be many x’s satisfying R . And here we arrive at
what we think is a distinguishing feature of the binary search, namely
that

it is beyond our control which =«
satisfying the postcondition
will be generated.

(This is in sharp contrast to linear searches where a fully specified value
is computed.)

In order to substantiate this feature we consider the instantiation a,b :=
0,100 and 7 :=true , meeting Prog0’s precondition and (0). We
then obtain

x,y = 0,100

i do y#a+l —

h = (xz+y) div 2

s if true — x:=h
| true — y:=h
fi

od

{0<z A <100} ,

which is a highly nondeterministic program. And the reader may check,
in whatever way he likes, that, indeed, it can generate any value =«
such that 0<z A z<100 .

We will return to this distinguishing feature at a later stage.

* *

Meanwhile, some readers may have been puzzled by the “weird”
condition (0). But it is not weird at all; when taking the contrapositive

43

of (0), we get
(07) v(=Z)h N h(=Z)y = x(=Z)y .
and this just expresses that Z’s complement relation =7 1is transitive.

Here are some of such relations 7 (for array f of the appropriate
type) :
x Ay =

o fatfy

o fa<fuy

o fr<A N A<fy

o faxfy<0

o fxV fy

e -QzAQy , forany Q.

The reader can easily verify that they all satisfy (0) (or (07)).

Hint The first example —f.x# f.y— is a very appropriate choice
when novices are to be introduced to the binary search.

End Hint .

The last example in the above list —=Q.z A Q).y— is a frequently
occurring one, and we shall now deal in more detail with its probably
best-known instance, viz. (.2 = C' < f.u . That is, given

e integer array fla..b] with a<b

o integer constant C' satisfying f.a<C A C<f.b

our binary search becomes —see remark below—

44 2. FROM SEQUENTIAL PROGRAMMING

{a<b}{ fa<C NC<fb}
x,y = a,b
{inv PO: a<a A xz<y A y<b
Pl: fa<C AN C<fy }{bndy—z}
i do y#a+l —
h:= (z+y)div2 {a<z<h<y<b}
cif fALSC —2x:=h
| C<fh—y:=h
fi
od
{a<z Na<b} { fa<C AN C<f(z+])}

Progl

Remark Actually, we arrived at the above program not by instanti-
ating our original program scheme Prog0 , but by just rederiving it for
the current relation f.x <O A C < f.y . That derivation is so simple
that it can be done by heart: guided by the invariants P0 and P1 ,
the program can be written down at once.

End Remark .

Note that the precondition of Prog0 (and hence of Progl) is
the only property of f used in the derivation. Thus we hope to have
shown that the binary search has a right of existence outside the realm
of sorted arrays.

However, if f is sorted in ascending order, Progl comes in very
handy to record the presence of C in f[a..b] , namely by postfixing
Progl with the assignment

present := (f.x=C) .

And, in fact, it is only for the conclusion that (' is absent from f —
present = false— that we use f’s ascendingness.

45

We have derived Prog0 (and Progl) under a precondition —
a<bA
a 7/ b— . In many practical situations, however, this condition need not
be satisfied. There are two general ways out. The first way out is to try
to solve the problem separately for the case in which the precondition
does not hold.

The more elegant way out is based on the observation that Progl
does not inspect the array elements f.a or f.b at all —see precondi-
tion a<h A h<b to the inspection of f.h — . This implies that
their actual values are completely irrelevant to the (outcome of the)
computation : they are thought variables mainly.

We exploit this observation in the following way. Suppose all we
know about fla..b] is that it is ascending and that a <b+1 (the
array may be empty). We define thought values f.(a—1) and f.(b+1)
in such a way that

o fla—1 .. b+1] is ascending, and
o f(a—1)<C AN C<f.(b+1) , and

since in addition a—1<b+1 holds, we have thus laid down precisely
the required precondition of Progl , be it with the instantiation a,b :=
a—1,b+1 . The solution to our problem to record the presence of '
in array f[a..b] now reads
x,y = a—1,b+1
i do y#a+l —
h = (xz+y) div 2
{a<hAh<b, hence f.h is defined }
cif AL C —a:=h
| C<fh—y:=h
fi

46 2. FROM SEQUENTIAL PROGRAMMING

od
{a=1<az A a<btl } { fa<C AN C<f(z41)}
cif a—1 =2 — {C<f.a} present := false
[a—l<2z— {a<az A 2<b,hence f.x is defined }
present := (f.x=C)

fi
The technique applied —adding thought values so as to establish a
required precondition— is suitable in many other examples as well.

* *

We conclude this note on the binary search with two exercises and
a question. The exercises are

(i) Given that integer array f[a..b] , a <b,is the concatenation of
an increasing and a decreasing sequence, find the top (maximum).
More precisely, design a program that computes a value M such

that
a<MANM<Db
fla .. M'] isincreasing
fIM .. b] is decreasing

(Note: fla.. M] isincreasing = (Vi a<i<M: fau<f.(i+1)))

(ii) Given that integer array fla .. b] , a<b,

- is the concatenation of two increasing sequences

- contains a dip, i.e.
(Fira<i<b: fa>f.(i+1)) , and
- satisfies f.a> f.b ,

47

design a program to compute a dip .

Both exercises can be solved using a binary search.

If, however, in exercise (ii) the given f.a> f.b is dropped, we
no longer know of a way to solve this problem with the binary search
technique, not even if we introduce a thought value f.(a—1) such that
f.(a=1)> f.b . The reason why the introduction of such a thought
value does not help here is that it may introduce a second dip at a—1,
and as we said before, it is now beyond our control which dip will be
computed by the binary search : it could be the required one, but it
could also be the thought dip that we ourselves introduced.

The as yet unsolved problem that remains is to identify the precise
conditions for a binary search to be applicable.

48

2. FROM SEQUENTIAL PROGRAMMING

3

On Multiprogramming

A preamble

If there is one branch of computer programming where the guideline
“Keep it Simple, Please” is to be taken highly seriously, it certainly
is the branch called “parallel programming” or “multiprogramming”.
Why is multiprogramming so difficult? There are many reasons, and
just one of them is exemplified by the following.

Consider the simple, meaningless, random program

x = y+1
Doz =y
T o= -y .

It consists of just three assignment statements. If we start it in an
initial state such that =7 A y=3 . it will deliver =6 A y=3 as
final answer. This is easily checked.

Also consider the equally simple and meaningless program

y = x+1
Py = a?
Y= y—T

49

30 3. ON MULTIPROGRAMMING

When started in =7 Ay=3 ,it yields z=TAy=42 .

Now let us run these two programs in parallel. Such a parallel
execution boils down to selecting an arbitrary interleaving of the three
statements of the z-program and the three statements of the y-program,
and then executing the six statements in the order selected. Because
there are 20 possible interleavings, the parallel execution of the two
programs can give rise to 20 different computations. Here are the
possible final values for = and 1y .

X y
-4032 8128
-3968 4032
-600 1225
-575 600
72 153
-63 72
-1 2

2 -1

6 30
20 380
56 3080
132 12
240 -224
496 -240
1722 42
2352 -2303
4753 -2352
5112 72
6480 -6399
13041 -6480

The moral of the example is clear: by the parallel composition, the
two extremely simple programs have turned into a horrendous monster.
The number of possible computations has exploded. If more component
programs or less simpler ones join the game, the phenomenon becomes

51

much more pronounced. As a result, any attempt to come to grips with
a multiprogram by considering all the individual computations that can
be evoked by it, is far beyond what we can imagine or grasp, and is
—in practice and in principle— doomed to fail. In short, operational
reasoning should be out!

If operational reasoning is to be out, we have to resort to formalism.
From sequential programming we have learned that the Hoare-triple
semantics [?] and the predicate transformer semantics [?] do away with
individual computations in a highly effective manner. Moreover, these
—very similar— semantics have created eminent opportunity for the
formal derivation of programs. The formalism that faithfully imports
these virtues into the area of multiprogramming is the theory of Owicki
and Gries [?] [?] , which we shall explain next.

Remark The theory of Owicki and Gries, said the computing com-
munity, has been designed for the a posteriori verification of multipro-
grams, and is of no use for the derivation of such programs. The only
thing we can say to this is that this is not true. The main reason for us
to write this note is to show how the Owicki-Gries theory can support
a method for the formal derivation of multiprograms. Of course, in
a short note like this we can show only some of the flavour of such a
method. Reasonable introductory accounts can be found in [?] and in
[?] , treatises of former students of ours.

End Remark .

The theory of Owicki and Gries

We consider a system of ordinary sequential programs. We call it a
multiprogram. The constituent sequential programs we call the (mul-
tiprogram’s) components. The multiprogram as a whole has a precon-
dition (describing an initial state from which the component programs
can start their execution). If all components terminate, the multipro-

52 3. ON MULTIPROGRAMMING

gram has a postcondition as well (describing the combined final states
of the components).

We now consider the components to be annotated with assertions,
in the way we are used to for sequential programs. The intended opera-
tional interpretation of the annotation is the following: if execution of
a component has reached an assertion P , then the state of the system
as a whole satisfies P . With this in mind, the subsequent proof rules
for the correctness of an annotation may sound “sweetly reasonable”.

By definition, the annotation is correct whenever for every assertion
in every component, it holds that

(i) that assertion is “locally correct”, and

(ii) that assertion is “globally correct”

Re (i) For proving the local correctness of an assertion P in a com-
ponent program, we just follow the rules of sequential programming.
We can proceed as if this program were to be dealt with in isolation.
There are two cases.

e If P isthe preassertion of the component program, we have to en-
sure that it is implied by the precondition of the entire multiprogram.
o If P isthe postassertion of a statement S with preassertion @),
we have to ensure the validity of Hoare-triple

{@rs{ry}.
End

Re (ii) For proving the global correctness of an assertion P in a
component program, we have to do more work, because now all other
components have to be taken into account. Namely, we have to prove
for each {Q}S —i.e. a statement S with preassertion) — taken
from a different component, the validity of the Hoare-triple

{PAQYS{P} .

In words, this boils down to showing that assertion P in the one com-
ponent cannot be falsified by the statements of the other components.

33

In the jargon we can often hear P’s global correctness phrased as “ P
is stable”.

End

Finally, if the multiprogram has a postcondition, we have to show
that all components terminate and that the postcondition is implied by
the conjunction of the postassertions of the individual components.

And this, in fact, is all there is to be said about the theory of Owicki
and Gries. We can summarize it quite succinctly by

the annotation is correct

each assertion is established by the component in which it occurs,
and
it is maintained by the statements of all other components.

* *

There is another notion that is very important for discussing mul-
tiprograms, viz. the notion of a system invariant. A relation P is a
system invariant whenever

- it is implied by the precondition of the multiprogram (P holds
initially), and

- for each {@Q}S in each component, we have

{PAQYS{P}
(P is not falsified by any statement from any component).

As a result, an invariant can be added as a conjunct to each assertion,
and therefore we can afford the freedom of writing it nowhere in our
annotation. This is of great importance for the clarity of exposition
and for the economy of reading and writing.

* *

54 3. ON MULTIPROGRAMMING

Example and Exercise

We return to the example at the beginning of this section on multipro-

gramming :

Pre: x=T Ny=3

Compz: x = y+1 Compy: y = x+l1
pox =y Py = a?
VT =Ty y Y = Y=

Post?: (Fivaty=i*)

Certainly, both components terminate. The exercise is to prove that
Post: (Fivaty=i*)

is a correct postcondition. This, most definitely, is not an easy exercise.
(Giving a posteriori proofs usually isn’t easy; designing programs and
their correctness proofs —hand in hand— is much more doable, and
far more rewarding.) The problem is that we have to invent, or at best
develop, annotation that enables us to draw the desired conclusion. At
this point of presentation, we simply reveal an adequate annotation,
and then embark on a proof of its correctness. Unfortunately, the ex-
ercise is already that complicated that we need to introduce auxiliary
variables (thought variables) to carry out the proof. The annotated
multiprogram, extended with the thought variables, is —see explana-
tion below—

Hb)

Pre x=TANy=3 A —-p A g

Inv? pAqg = (i aty=i*)

Compux {-p}az:=y+l Compy y = x4+l
i {op}a=y Py =2
;{(Fine=d®) } L Y.q = y—x,lrue
r,p = x—y,lrue {a}

Post?: (Fivaty=i*)

For reasons of symmetry between the components we have annotated
Compy less lavishly than Compz . We laid down a postassertion p
to Compzr and a postassertion ¢ to Compy , with the intent that
their conjunction p A ¢ imply Post . That is how the need for
invariant Inv arose. We leave it as an exercise to the reader to check
the correctness of the annotation —which is not difficult—. By way of
example, we shall demonstrate the invariance of Inv , i.e. of

pANqg = (Fizaty=i*)

We have to show that it holds initially —which it vacuously does— , and
that no statement of the multiprogram violates it. By the symmetry
in Inv and in the components, we can confine our attention to the
statements of Compz

Re {-p}aoi=ytl
Our proof obligation is
{InvA-pta:=y+l{Inw} ,
the correctness of which follows from the following calculation:
Inv(z = y+1)
{ definition of Inv }
pAq = (Fizytlity=i*)

36 3. ON MULTIPROGRAMMING

{ -p, from precondition InvA-p }

true .

End

Re {-p}ai=y

Similarly.
End

Re {(Fua=i*)}a,p = xz—y, true
Our proof obligation is
{Inv AN (Fizae=i*)} a,p := a—y,true { Inv} |
the correctness of which follows from
Inv(x,p := ax—y,true)
{ definition of Inv }
trueNg = (Fiz a—y+y=1i*)

{ simplification }
q=(Jizz=i*)

{ (Fizax=4*), from the precondition of the statement }

true .

End

Finally, we have to spend a word on our program notation. We
write down our sequential programs just the way we are used to, viz.
in the Guarded Command Notation. There is one point, though, that
needs extra emphasis, namely that an alternative construct like

57

if B — skip f

is our main tool for achieving synchronization. To all intents and pur-
poses, it is equivalent to

do =B — skip od

9

i.e. “waiting until B istrue”. In the literature, we often find it denoted
as await B . Its semantics, in Hoare-triple format, is given by

(B=R)if B skipfi{ R} .

Total Deadlock and the Multibound

In most multiprogramming problems, the component programs have
to cooperate on a task. Correctness of the cooperation usually re-
quires some sort of synchronization among the components. The syn-
chronization becomes manifest by the occurrence of statements like
if B — skip fi (or await B) in the program texts. The effect of their
execution is that the normal computational “progress” of a component
is blocked until guard B is “found” to be true. However, with the
incorporation of these “blocking” statements, a next and very serious
complication has entered the game.

While, on the one hand, these statements are necessary for a tem-
porary blocking of a component’s progress, they introduce the danger
of infinite blocking on the other hand. As a consequence, we are put up
with a new kind of proof obligation, namely to show that each individ-
ual blocking statement that we introduce into a component program,
will not lead to an infinite blocking of that component. This proof obli-
gation is of a completely different nature from the proof obligation we
had for the correctness of annotation. In fact, showing what the jargon
has called “individual progress” or “liveness”, is, in full generality, so
difficult that computing science has not yet succeeded in making this
problem technically feasible.

However, there are some special circumstances in which individ-
ual progress can be shown quite easily. One of these circumstances is
when we have the following scenery. Consider, as an example, a three-

38 3. ON MULTIPROGRAMMING

component multiprogram that, projected on the variables x , y , and
z , has the form

k[= a+1] [y = y+1] [z = 241]

(*[S] is short for do true — S od .)

The rest of the code of these components is such that it satisfies some
synchronization requirement, the precise nature of which does not con-
cern us here. Now suppose that it so happens that this multiprogram
maintains as a system invariant

MB: r<y+K AN y<z4L AN z<z+M

for some constants K , L., and M . We then observe that if, due to
the (unknown) synchronization protocol, one of the components comes
to a definitive halt in one of its blocking statements, so will the others.

As a result, the multiprogram as a whole can exhibit only two scenarios
as far as progress is concerned, to wit

either all components get stuck forever
—this is called “total deadlock”—

or each individual component makes progress.

So, in the presence of a “multibound” like MB | individual progress
can be demonstrated by showing the absence of the danger of total
deadlock. And the nice thing about this is that the latter can be done
using the theory of Owicki and Gries. (We do not need to go into this
for the purpose of this note.)

* *

So much for these notational and conceptual issues. We now turn
our attention to some examples of multiprogram derivation.

39

The Parallel Linear Search

The problem of the parallel linear search is a nice little paradigm
which was first communicated to us in the mid 1980s by Ernst-Ridiger
Olderog. It serves as a running example in [?]. In [?], we can find a
first formal derivation of the algorithm, a derivation which is carried
out in terms of the UNITY-formalism [?].

The problem is as follows. Given is a boolean function f on the
integers, such that

(0) (i fa)

Our goal is to design a terminating multiprogram with two compo-
nents that “finds” an integer with a true f -value. The idea is that one
component “searches” through the nonnegative integers and the other

component through the nonpositive ones. More precisely, we have to
design a terminating multiprogram with the following specification

Pre: x=0 A y=0
Inv: 0<z A y<0
Post: fx Vv fuy
CompA: do ...—x:=a+lod { RA}
CompB: do ...—y:=y+lod{ RB} .
At this point, there are two immediate concerns. One is that we
have to choose —correct!— assertions RA and RB such that
(1) RANRB = faa V fuy .
The other is that we have to ensure termination for both components.
In order to satisfy (1) we choose both RA and RB equal to
fax Vv fuy .
Remark In view of the symmetry between the components, this
choicefor RA and RB is quite reasonable. Besides, it is a good heuris-
tics to choose the annotation as weak as possible, if there is a choice.
The reason for this is that the annotation can always be strengthened

later on, should the need arise —see [?] or [?]— . In our example, these
heuristics rule out the stronger choice f.z for RA ., and f.y for RB

60 3. ON MULTIPROGRAMMING

End Remark .

In order to ensure the local correctness of RA ,i.e.of fax VvV fuy, we
can choose —f.r as a guard of the repetition of CompA , but this
one is too weak to ensure termination of CompA : given (0) does
not guarantee the existence of a nonnegative x for which f.z holds.
Therefore, we must resort to a stronger guard. Let it be —f.x A ~d .

We thus arrive at the first approximation of the multiprogram to

be designed.

Pre: x=0 A y=0
Inv: 0<z A y<0
Post: fx Vv fuy

CompA: do —fx A—-d —
{ = f.x , see later in Note 1 }
z = z+1
od
{fazV [y}

CompB: do —fy A -c —
{~fy}
y = y—1
od
{ fx Vv fy ,see Note 0 below }

In Note 0 we now examine the —local and global— correctness of
assertion f.x V f.y in CompB . (The correctness of f.x V f.y in
CompA follows by symmetry.)

Note 0 “f.x VvV fiy in CompB”
L: For f.xV fiy in CompB to be locally correct it suffices that
—(=fyA=-e) = faV fy

which —by predicate calculus— equivales

¢c = faV fuy .

61

We shall meet this condition by adopting

PA: c = faV fuy
as a system invariant, and —by symmetry— also
PB: d = faV fy .

We will address the invariance of PA and PB in a moment.

G: For fax VvV fy in CompB to be globally correct we have to
show the correctness of the Hoare-triple

{faV fytaz:=a+1{faVv fy} .

To that end we observe

fa Vv fy= (faV fyle:=a+])
{ substitution }

fa Vv fy= f(latl) V fy

= { nothing is known about f.(x+1) }
fa Vv fy=fuy
= { predicate calculus }

-fr .

And here we encounter the reason why it is pleasant to have —f.x
as a valid precondition to x := x+1 . That is why we add it .

End Note 0 .

Note 1 “=f.x in CompA”

L: The local correctness follows from the guard

G: The global correctness follows, because CompB changes neither
x nor f .

End Note 1.

62 3. ON MULTIPROGRAMMING

At this point we are left with the care for the invariance of PA
and PB ., and with the care for termination of both components. The
two cares largely coincide. We first observe that

(Vi:0<i<a:—fai) AN (Vey<e<0:-fa)
is a system invariant: this is easily checked. With the given (0) , i.e.

(i fa)
we therefore conclude that at least one of the two components termi-
nates. If CompA terminates, it has established f.z V f.y —see the
annotation— and it can now enforce termination of CompB as well by
falsifying the latter’s guard —f.y A —¢, which can be done by —just—

¢ := true . Fortunately this does not interfere with the requirement
that
PA: c= faV fuy

be an invariant, thanks to the validity of f.z V f.y . Thus we arrive at
our next (and last) approximation of the multiprogram to be designed.
We give the fully annotated program text, and leave to the reader the
formal proof of the invariance of PA (and of PB).

Pre: r=0Ay=0A—-cA-dAN (T fa)
Inv: 0<z ANy<0 AN PA AN PB

Post: faxV fuy

CompA:

do—~fx AN-d—{-fzx}z:=2+1 od
{fxV |y}

1 ¢ = true

{e¢N PA hence faV fy }

CompB:
do—~fyAN—-c—{-fy}y:=y—1od
{fxV [y}

:d = true

(faviy)

63

A problem of Phase Synchronization

The problem of phase synchronization for two machines is one of the
simplest problems enabling us to get across some of the flavour of a
method for the formal derivation of multiprograms. (For many more
examples, we refer to [?] and [?].) An interesting by-product of the
problem is that it can serve to illustrate how “parallelism” can be traded
for storage space. Namely, we shall present two solutions, one of which
allows “more parallelism” than the other, be it at the expense of more
storage space. We also illustrate how one can consciously choose be-
tween the two options.

We consider the two-component multiprogram given by

Comp0: *[S] Compl: x[T |

(Notation * [S] is short for do true — S od .)

Comp0 and Compl are given “to run in parallel”. Moreover, each
individual execution of S and each individual execution of T' are guar-
anteed to terminate. The synchronization task ahead of us is to see to
it that the number of completed S’s and the number of completed T"s
are “never too far apart”.

In order to make the synchronization requirement precise, we intro-
duce two fresh auxiliary integer variables z and y , and adjust the
multiprogram proper in the following way:

Pre: r=0Ay=0
Comp0: [{ <y ,?7} S ; x:= a+1]
Compl: [{ y<z,?7}T ; y:=y+l |

This, now, is our formal specification, to the extent that we are now
supposed to understand that it is our task to superimpose on these
program texts additional code so as to accomplish that

64 3. ON MULTIPROGRAMMING

- in Comp0 , x <y is a valid precondition to S,
and, similarly,

- in Compl , y<z is a valid precondition to T .

Remark Variables = and y ., and the operations on them, have
been introduced to specify the synchronization problem. It goes with-
out saying that in the further development of the multiprogram, no
further changes of = or y are allowed, because they would defeat
the purpose for which these variables and the operations on them were
introduced in the first place. Inspections of them are, however, harm-
less.

End Remark .

Before we embark on a derivation, we observe that no matter which
solution we end up with, relation = <y-+1 will be a system invariant.
This is so because

- it holds initially
- increments of y in Compl do not falsify it

- assignment z := x+41 will have precondition x <y . (Here we
use that no other assignments to x are allowed in the further
development.)

By symmetry, also y <x+1 will be an invariant, and hence
MB: r<y+l Ay<ax+1

This is a perfect multibound for our multiprogram, and as a result
our only proof obligation with respect to individual progress will be to
show the absence of total deadlock, no matter what will be our ultimate
solution.

65

Now let us start our derivation. We have to ensure the correctness
of assertion =<y in Comp0 . TIts global correctness is for free:
y := y+1 does not falsify it. As for its local correctness, we observe
that it is implied by the precondition Pre of the multiprogram. So it
suffices to make = <y a loop invariant of Comp0 . Compl is dealt
with symmetrically. Thus we arrive at

Pre: r=0Ay=0
Comp0: [{ 2<y } S; 2z =a+1{ 2<y,?7}]

Compl: [{ y<a }T;y=y+1{ y<a,7}]
Approximation 0

Remark By design, this approximation satisfies our original formal
specification. But moreover, it acts as the formal specification for what
follows. The approximation above is the precise interface between the
past and the future in the design process, and it is noteworthy that
that interface is quite thin.

End Remark .

From here, there are two essentially different ways in which to pro-
ceed. They result in two different solutions.

Solution A

Again, the global correctness of = <y in Comp0 is for free. We ensure
its local correctness by “testing”, i.e. by prefixing assertion = <y with
if @<y —skipfi . Compl is dealt with in a symmetric fashion, and
thus we arrive at

Pre: x=0 A y=0
Comp0: * [{z<y} S Compl: * [{y<z} T
r o= a1 sy o= y+1

o if y<ax — skip fi

{a<y} {y<az}

]]

;if 2 <y — skip fi

?

66 3. ON MULTIPROGRAMMING

Approximation 1A

There is no danger of total deadlock because the disjunction of the
guards is true. So, in a way we are done. We wish to observe, though,
that by the invariance of

MB: r<y+l ANy<az+1 ,

the difference y—x 1is just three-valued, so that we can eliminate the
ever growing integers x and y at the expense of, say, just two booleans.
We will, however, not carry out such a coordinate transformation here.

End Solution A .

Solution B

Starting from Approximation 0 again, we now destroy the symmetry
between the components. We ensure the local correctness of assertion
x<y in Comp0 by requiring that the precondition of z := x+1
implies #+1<y . For Compl we do not carry out such a move. We
thus obtain

Pre: x=0 A y=0
Comp0: * [{z<y} S Compl: * [{y<az}T
ey, 7} Py o=yl
= a+l { y<z,7}
{a<y}]

Approximation 1B

Along with the transition from Approximation 0 to Approximation
1B, two things happened.

(i) The latter has a stronger annotation: preassertion a+1<y to
x := x+1 has crept in. Now, let us recall the operational inter-

67

pretation of an assertion. If a component is “at” an assertion,
the state of the system as a whole satisfies that assertion. The
stronger the assertion, the smaller the space in which the rest of
the system can manoeuvre, i.e. the lesser the degree of parallelism
that can be exhibited.

(ii) No matter how we proceed from Approximation 1B, relation
Q: r<y A y<az+l

will be a system invariant. This is easily checked. As a result,
the difference y—a is just two-valued, instead of three-valued as
in Solution A. We therefore can represent in by a single boolean.

And here we see in a nutshell how “parallelism” can be traded for
storage space, a phenomenon that we alluded to before.

Remark We can push the phenomenon to a limit by restoring the
symmetry between the components and perform the same transforma-
tion for Compl . Then the ensuing invariant will be z<y A y<azx
i.e. x=y . As a result, total deadlock will become unavoidable. And
indeed, total deadlock can be implemented with zero variables, for in-
stance by means of constructs like if false — skip fi

End Remark .

Now we proceed from Approximation 1B in a straightforward man-
ner so as to arrive at

Pre: x=0 A y=0

Inv: r<y Ay<z+l

68 3. ON MULTIPROGRAMMING

Comp0: * [{z<y} S Compl: * [{y<az}T
s if v+1 <y — skip fi gy = y+1
{z+1<y } s if y<ax — skip fi
px = x+1 {y<z}
{z<y}] .

]

And again, there is no danger of total deadlock, so that individual
progress is guaranteed.

As a last step in our development we this time do perform the coor-
dinate transformation towards a single boolean. We introduce boolean
variable ¢, coupled to x and y by

c = (x=y) .
Then, by the invariant * <y A y<z+1,

r+1<y = -¢c and y<z=c

{2+1<y }z:=a+1 <« {-c}c:=true

{y<z }y:=y+l — {c}e:=false .
And thus we arrive at our final solution, for which the raw code reads

Pre: ¢

Comp0: * [S Compl: * [T
; if =c — skip fi ;¢ = false
if ¢ — skip fi

; ci= lrue

]]

End Solution B .

69

A case of intuitive reasoning

Mathematical intuition is a very dangerous and unreliable compass,
even more so in the case of multiprogramming. Recently we showed a
very small multiprogram to our class, namely the following

A: y = false B: x = false
o if y — skip fi o if @ — skip fi

These are just two straight-line programs, each consisting of just two
simple statements. Hardly anything simpler can be conceived, can’t it?

Now, for the sake of letting both components terminate, we granted
the class the possibility to add statements “x := true” to component
A, as many as they wanted and wherever they wanted. And similarly,

statements “y := true” were allowed to be added to B .

The class did not hesitate very long. Because component B is
“waiting” for = to become true, termination of B becomes most

likely if A performs “x := true” as often as possible. And symmet-

rically so for “y := true” . So, here is the solution:
A: x = true B: y 1= lrue
0y = false o x = false
;@ i= true 3y 1= true
o if y — skip fi o if @ — skip fi
;@ i= true 3y 1= true

But, alas, each effort to give a genuine termination proof failed. And
indeed, there is no guarantee that both components terminate. (Let
A proceed to its if-statement. Then =« A —y holds. Next, let B
perform its first “y := true” . Then 2 A y holds. Now let A
terminate. Then B gets stuck.)

The nice thing is that, if we remove the first line from each compo-
nent, i.e. if we consider

70 3. ON MULTIPROGRAMMING

A: y = false B: x = false
;@ i= true 3y 1= true
;if y — skip fi ;if x — skip fi
;@ i= true 3y 1= true

then everything is okay (proof omitted here [?]).

* *

To us, the above is a very nice example to demonstrate the intrica-
cies of multiprogramming to a novice audience, and to warn them to
never lean on “intuition”, but on rigorous formal proofs instead.

s o o o o ks s o ok Rk R o S ok ok sk Rk ks kS ok ok o R o ok K ok

Bibliography

71

