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Abstract

The main purpose of this paper is to create
more evidence for the observation that parallel
programs, distributed or not, can be formally
—and economically — derived by means of
just the predicate calculus and the theory
of Owicki and Gries. The example selected
here is the problem of Phase Synchroniza-
tion, in which a number of programs each pass
through an unlimited number of phases in a
more or less synchronous fashion. A solution
is developed for the special case of programs
located in the nodes of a tree with commu-
nication facilities restricted to communication
with neighbouring nodes.

Keywords and Phrases: program deriva-
tion, multiprogramming, multibounds, theory
of Owicki and Gries, predicate calculus, de-
sign heuristics, distributed algorithms, phase
synchronization.

1 Introduction

The most common evaluation of the theory of
Owicki and Gries is that it would, at best, be
suited for a posteriori verification of parallel
programs [AO91], and even of only those that
cooperate via shared variables. Fortunately,
this limited view of the potential of the theory
is becoming less and less tenable; by its very
simplicity, the theory can pretty well be used
for the formal derivation of parallel programs.
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Over the past few years quite some evidence
has been collected that, armed with just the
theory of Owicki and Gries and the predicate
calculus, one can not only just derive paral-
lel programs but also do it fairly economi-
cally. One of the reasons for writing this pa-
per is to show how this works. We develop a
distributed algorithm in order to demonstrate
that the theory of Owicki and Gries is instru-
mental outside the realm of shared-memory
algorithms as well. Of course, one single ex-
ample cannot exhibit the general mode of de-
riving parallel programs — multiprograms as
we call them — but it can give some of the
flavour. More varied accounts can be found
in [Moe93] and [vdSom94], and in [Fe90] and
[FG95].

2 The theory of Owicki
and Gries, in brief

In explaining the theory of Owicki and Gries
we confine ourselves to what is needed for the
understanding of this paper. For more de-
tailed explanations we refer to [OGT76] and
[Dij82].

A multiprogram is a set of ordinary sequen-
tial programs, which we call the (multipro-
gram’s) components. The multiprogram as a
whole has a precondition, and the components
may be annotated the way we are used to for
sequential programs. The theory of Owicki
and Gries tells us that this annotation is cor-
rect whenever for each assertion it holds that

e it is “locally correct” with respect to the
component in which it occurs, i.e. it is es-
tablished by the (dynamically) preceding
atomic statement of that component



e it is “globally correct” with respect to the
rest of the system, i.e. it is not falsified by
any atomic statement of any other com-
ponent. (This is usually called “interfer-
ence freedom”.)

In principle, this is all there is to it. Of
course, it ought to be clear which state-
ments are atomic. In our forthcoming exam-
ple we consider assignment statements and so-
called guarded skips — statements of the form
if B — skip fi— to be atomic.

Another important notion in multiprogram-
ming is a system invariant. A relation is a
system invariant if and only if it is implied
by the multiprogram’s precondition and it is
not falsified by any atomic statement of any
component. As a result, an invariant can be
added as a conjunct to each assertion, so we
can afford the freedom of writing it nowhere
in the annotation. System invariants greatly
contribute to the economy of proving and de-
signing, and, when used in the way indicated
above, also to clarity of exposition and econ-
omy of writing ... and reading.

Finally, we point out that, in this paper,
the guarded skip is our only tool for achieving
synchronization. Operationally, guarded skip
if B — skip fi is equivalent to do =B — skip od.
We handle it via a proof rule, which in Hoare-
triple semantics for partial correctness reads

{B=R}if B—skipfi{R} .
Its most frequent application is
if B—skip fi{B},

for establishing the local correctness of asser-
tion B.

3 Total deadlock and the
multibound

Apart from our concern for partial correctness
of a multiprogram, which we capture by pro-
viding a correct annotation, we are also con-
fronted with the totally different problem of
“individual progress”. A component can be-
come blocked indefinitely when it is engaged
in executing a guarded skip whose guard never
becomes stably true (due to the operations of
the rest of the system). Proving individual

progress is, in general, quite a nasty task, so
nasty even that computing science has not yet
succeeded in solving this problem in a techni-
cally satisfactory manner.

Under some special circumstances however,
the problem of individual progress can be
tackled gracefully. Consider, for instance,
the following three-component multiprogram,
which, projected on the variables z, y, and z,
has the form!

[xi=14z ], #[y:=1+y ], [ z:=1+2].

Moreover, suppose that this system maintains
invariant

MB: z<K+yAy<L+z A z<M+z,

for some constants K, L, and M. Then, if one
of the components comes to a definite halt so
will the others. Consequently, the multipro-
gram as a whole can display just two scenarios
as far as progress is concerned, to wit

e cither all components get stuck forever
—this is called “total deadlock”—

e or each component makes progress.

In the presence of a “multibound” like MB we
can demonstrate individual progress by show-
ing the absence of the danger of total dead-
lock. And the nice thing about this is that
the latter can be done by just the theory of
Owicki and Gries.

Typically, we prove absence of the danger
of total deadlock as follows. We insert a cor-
rect preassertion to each guarded skip in each
component, and we then show that for each
combination of guarded skips —taking one
from each component — the disjunction of the
guards is implied by the conjunction of the
corresponding preassertions, cf. [Hoog86].

4 The problem of phase
synchronization

4.1 Specification

The problem of phase synchronization, which
we learned from J. Misra [M91], is as follows.
We consider an arbitrary, nonempty set of
components of the form

L %[ T] is short for do true — T od



p: *[ Sp].

We assume that all invocations of S-p termi-
nate, for each p. The successive S-p’s are the
successive phases of component p. The prob-
lem now is to synchronize the components in
such a way that, when a component is about
to start execution of its (n+1)%" phase, all
other components have completed at least n
of their phases. In order to render this syn-
chronization requirement more formally and
more precisely, we introduce a fresh variable
x-p, for each p, that keeps track of the number
of phases component p has completed. Our
first version of the multiprogram thus gets the
form

Pre: (Vgq::z-q=0)
{(Vg::zp<zq), 7}
S-p

sepi=1+xp

]

o[

version (0

This, now, is our formal specification. The
task ahead of us is to superimpose addi-
tional code on the above multiprogram so
as to achieve that the plugged-in assertion
(Vq :: z-p<z-q) be a correct preassertion to
S:p. We use symbol ? —throughout the
paper— to explicitly indicate what remains to
be done.

Before embarking on a solution, we observe
that, no matter how we proceed in establishing
the target assertion (Vq :: z-p<z-q), relation

MB: (Vp:: (¥Vq::zp<l+z-q))

will be a system invariant. But this is a perfect
multibound! Consequently, to show individual
progress in our (ultimate) solution, it suffices
to show the absence of total deadlock.

4.2 Toward a distributed solu-
tion

In version 0 above, the local correctness of tar-
get assertion (Vq :: z-p<zx-q) is most easily
established by a guarded skip with that as-
sertion as a guard. However, this would re-
quire facilities for direct information exchange
between any pair of components. Our aim,

though, is to develop an algorithm for com-
ponents that form the nodes of a tree and
communicate only with components in neigh-
bouring nodes. As a first step towards such
a distributed algorithm, we rewrite our target
assertion into the equivalent?

zp<(lq:ayq),

and then decide to nominate one fixed compo-
nent R —to reside in the root of the tree—
to keep track of the minimal z-value, i.e. to
maintain

rR=(1q::zq).

This allows us to to rewrite our target asser-
tion into the equivalent

zp<zR.

To ensure that the minimal z-value will indeed
be in the root, we decide that each path from a
node towards the root will exhibit a descend-
ing sequence of z-values. (Thus, the z-values
form a so-called down-heap.) More precisely,
with f-q denoting the father of ¢ (for ¢ # R),
we decide to maintain invariant

Py:(¥Yq:q#R:z(f-q) <zq).

Thus, the next version of our multiprogram
becomes —symbol © is used to administer
what has been established—

Pre:  (Vq::xz-q=0)
Inv: MB, ©

Py, ?
p: ] {zp<eR, 7}

S-p

s oopi=1+zx-p

]
version 1

4.3 The core of the design

In version 1 above, the local correctness of as-
sertion x-p <z-R could again be easily estab-
lished by a guarded skip with that assertion as
a guard. Although the situation has improved
compared to that of version 0, such a guarded
skip would still require facilities for direct in-
formation exchange between root R and any

2| denotes the minimum



other component. So we must find a different
way to guarantee the correctness of x-p<z-R
. One opportunity is created by exploiting the
transitivity of <, viz. by replacing the target
assertion by the stronger

z-p < something A something <z R .

If this is going to work out well, the something
ought to be an expression that depends only
on information of component p and its imme-
diate neighbourhood. In that case the first
conjunct becomes a suitable candidate for a
guard, and the second conjunct —,and there
will be no cure!— had better follow from a sys-
tem invariant. (In passing, we wish to men-
tion that this strategy is quite general in mul-
tiprogramming.) Unfortunately, the conjunct
something < x- R cannot follow from one of our
current invariants MB or Fy, because neither
grants us an inequality with z- R at the greater
side and a something of the desired shape at
the smaller side. Therefore, an essentially new
ingredient has to enter the game.

That new ingredient consists of yet another
set of fresh variables, one per component.
They serve to eliminate our target assertion
z-p< x-R in the following way:

zp<zR

< { for something we choose y-p }
rp<ypANyp<z-R

< { separate z’s and y’s }
zp<ypANyp<yRANyR<zR

Here we decide that the last two conjuncts will
follow from new system invariants. The in-
variance of the middle conjunct requires that
the maximal y-value reside in the root, and we
will meet this requirement by seeing to it that
each path from a node to the root will exhibit
an ascending sequence of y-values. (Thus, the
y-values form an up-heap.) More precisely, we
will maintain as a system invariant

P (Vg:q#R:yq<y-(f-q)) -

Adoption of the third conjunct y-R<z-R
yields, in combination with P, and P;, the
stronger invariant

Py: (Vq::yq<z-q)

In view of our target assertion x-p <y-p, it will
be necessary to increase y’s, and in our next
version we immediately do justice to this, and
to P>, by plugging in assignments to y so that
P, is satisfied®. We obtain

Pre:  (Vg::z-q=0) A (Vq::y-q=0)
Inv: MB, Q
Py:(Vq:q#R:x(f-q) <zq), ?
Py (Vg:q#R:y-q<y-(f-q)), ?
Py:(Vqg::yq<zq), ©

p:*[ {zp<yp, O}
S-p
sxpi=14xp
sy-pi=1+y-p

]

version 2

Meanwhile, the correctness of our new tar-
get assertion z-p < y-p has been established by
construction. What remains is our care for the
invariance of Py and P;.

4.4 Solution

As for Py, increments of z-p in component p
can violate it. The weakest precondition for
z-p:= 14z p not to violate Py is

(Vg:q#R Ap=f-q: 1+z-p<z-q),
which —since p= f-q¢ = ¢# R— simplifies to
(Vg:p=fq:1+z-p<aq).

We plug this in as a preassertion to
x-p:= 1+z-p. Its global correctness is for free
because other components only increase their
z-values. We establish its local correctness by
a guarded skip. Notice that the evaluation of
this guard by component p requires commu-
nication only with p’s children. Also notice
that this condition simplifies to true for leaf
components, so that there the corresponding
guarded skips can be omitted.

As for Py, increments of y-p in component
p can violate it. The weakest precondition for
y-p:= 14+y-p not to violate P; is

(Vg:q#R ANp=q:1l+yq<y-(f-q)),

which for p# R simplifies to

31t is the order in which z-p and y-p are increased
that caters for P»



1+y-p<y-(f-p)

and for p= R to true. Again its global correct-
ness is for free, and its local correctness will
be established by a guarded skip. We thus
arrive at our next and almost final version —
please ignore, for the time being the added
assertions —.

Pre: (Vq::z-q=0A y-¢=0)
Inv: MB, Py, Py, Py, all Q

For a non-leaf component p, p# R
xS

{z-p=y-p, O}
;if (Vg:p=f-q:1+x-p<z-q) — skip fi
;xpi=14zp

{z-p=1+y-p, O}
; if 14+y-p<y-(f-p) — skip fi
s ypi=1+y-p

]

For a leaf component p

[ Sp
;xpi=l+ax-p
{z-p=1+y-p, O}
3 if 1+y-p<y-(f-p) — skip fi
s ypi=1+yp

]

For component R

x[  S'R
{z-R=y-R, O}
;if (Vg: R=f-q: 1+a-R<x-q) — skip fi
;e R:=1+2-R
;yR:=14y-R

version 3

And we are through, except for demonstrating
the absence of total deadlock. The assertions
we added have been included for that purpose.

4.5 Absence of total deadlock

We show the absence of the danger of total
deadlock by assuming that each component is
stuck in an if-statement and deriving the va-
lidity of false. Most components have two if-
statements; the leaves and the root have just
one. We now colour the components either
black or white by the convention that a com-
ponent is

e black when stuck in its first if-statement
(absent at the leaves), and

e white when stuck in its second if-
statement (absent at the root).

Thus, the root is black and all leaves are white.
Consequently, there exists a black component
with white children only —nice, little proof
omitted—. Let p be such a black component.
Because it is blocked in its first if-statement,
we have

(i) (Ig:p=f-q:xp>zq) NT-p=Yp .

The first conjunct is the negation of the guard
and the second conjunct is the preassertion we
added to this if-statement.

Because all of p’s children are white, hence
blocked in their second if-statement, we also
have

(it) (Vg :p=fq:yq>y (f-q) Ax-g=1+y-q).

The conjunct x-q=1+y-q is the preassertion
we added to this if-statement.
Now let g be a witness for (i), i.e.

(iii) p=f-q N xp>x-q N TP=Yp .
By instantiating (i) for this ¢, we find

(iv) y-q>y-(f-q) Nz-q=1+y-q .

We now derive the validity of false:

r-p
{ (i) }
xrq
= {(w)}
1+y-q
{ (iv) }
4y (f-q)
{ (i7) }
I+y-p
= { () }

1+z-p

\%

\%

So much for the absence of total deadlock.
Thanks to the presence of multibound MB,
individual progress is guaranteed as well.



4.6 A final transformation

In principle, our development has come to an
end. Yet, we wish to address two more issues
that could be relevant in practice. One is the
rather coarse-grainedness of, in particular, the
atomic guards (Vq:p=f-q:l+z-p<a-q),
and the other is the problem of ever growing
integers = and y.

The coarse-grained guards are eliminated as
follows. Consider a multiprogram in which
one of the components contains guarded skips
if BAC — skip fi. Now, there is a (rather un-
known) theorem — The Guard Conjunction
Lemma — stating that for globally correct B
this coarse-grained guarded skip can be re-
placed with the succession

if B — skip fi ; if C — skip fi

of these two finer-grained guarded skips, with-
out impairing the correctness of the multi-
program. The tedious proof of this (impor-
tant) lemma is not given here [Hoom93]. For
our current example, in which each individual
conjunct 1+z-p<z-q is globally correct, this
means that the conjuncts can be evaluated one
by one, and in any order.

We deal with the ever growing integers by
eliminating them. For the elimination of z’s,
we observe that, thanks to the invariance of
MB, the maximum and the minimum z-values
differ by at most 1, and that therefore any two
z-values differ by at most 1. As a result, we
can perform a coordinate transformation to-
wards the boolean domain, viz. by introduc-
ing booleans c, one per component, such that

cp=cq = xTp=xq .
We can then replace in our program

1+x-p<x-q by cpZcq and
z-p:=1+z-pbycp:=-cp

The elimination of the y’s is pretty much the
same, because we can prove the invariance of
the assertion (Vp,q :: y-p<1+y-q) :

z-R

{ P}
z-q

{ structure of component p }
I+y-q

IN

IN

We introduce booleans d to replace y, and our
final program — of which we now just give the
raw code— is

Pre: (Vp,q::cp=cqAdp=dq)

For a non-leaf component p, p#R

x[  Sop
iif (Vg :p=f-q:cpZtcq)—skipfi
jepi=—ep
sif d-p#d-(f-p) — skip fi
sdopi=—d-p

]

For a leaf component p

[ Sp
jepi=—ep
sif d-p#d-(f-p) — skip fi
sdepi=—d-p

]

For component R

x[ SR
;if (Vg: R=f-q:c-R#cq)— skip fi
;cR:=-c-R
;d-R:=-d-R

5 Final remarks

It is quite probable that the algorithm we de-
veloped is well-known. After the above was
done, we recognized that the algorithm could
even have been invented by purely operational
considerations. After all, one can view it as
a huge two-stage handshake protocol. In the
first stage the leaf nodes asynchronously send
completion signals towards the root. As soon
as this wave of completion signals has reached
the root, the latter reflects it as a permission
signal which then scatters through the tree
giving nodes permission to enter their next
phase. Etcetera. (This “metaphor” makes
clear that the algorithm is even an efficient
one: in a reasonable tree the height of the tree
is the logarithm of the number of nodes.)



But even if the algoritm were invented on
such grounds, the task of proving its correct-
ness would still remain. And this could be ex-
tremely difficult. At best, one would reverse
the course of a development, but it is far more
likely that an a posteriori proof will enter more
cumbersome alleys, if not dead ones. Deriv-
ing programs from their specification is just
much more economical and satisfactory. This
is so because program derivation is a very goal-
directed activity, in which the program and its
correctness proof see the light in a very har-
monious fashion.

The main purpose of this paper was to drive
home the message that the derivation of not
too trivial an algorithm like the Distributed
Phase Synchronization is very well feasible
with the simple theory of Owicki and Gries
as our only tool for reasoning about multipro-
grams.
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