More about unique solutions and well-foundedness, courtesy Rutger M. Dýkstra

Here is an account of (part of) yesterday's ETAC; more in particular this note records a theorem and its proof, presented to us by Rutger Dykstra. The theorem says that *r; y; s* is the unique solution of

$$x : [x = r_j \times v y v \times x; s]$$

for left-founded (see later) relation r, right-founded relation s, and arbitrary relation y.

Let us first summarize the facts that we know about the somewhat simpler *r; y and y; s*.

For arbitrary relations r,s, and y we have

- (0a) *r; y is the least/strongest solution of x: [x = r; x v y]
- (ob) y; s* is the least solution of $x: [x = y \lor x; s]$

Remark For lack of a better alternative, we rather inelegantly use "*" both as a prefix and as a postfix operator.

Now, one of the theorems mentioned by Rutger was the "combination" of (oa) and (ob). (It was only mentioned in passing.) The theorem reads:

Proving (oc) from (oa) and (ob) is a rather straightforward exercise, which we leave to the reader. Note that, if we can assume that *false and false* are equal to the identity element I of operator ";", the reverse is also possible: in that case, (oa) and (ob) are instances of (oc) - with s:=false and r:= false, respectively.

The more important fact to be mentioned is that for "properly founded" r and s, the least solutions in (0) are unique solutions of their equations. More precisely, we have

(1a) r is left-founded
$$\Rightarrow$$

 $\langle \forall x,y :: [x = r, x \vee y] = [x = *r, y] \rangle$

(1b) s is right-founded
$$\Rightarrow$$
 $\{\forall x,y :: [x = y \lor x;s] = [x = y;s*].$

Remark We did the nice exercise of proving (1a) -and, by symmetry, (1b) as well - using definitions

r left-founded = $(\forall x :: [x \Rightarrow r; x] \Rightarrow [x \Rightarrow false])$ s right-founded = $(\forall x :: [x \Rightarrow x; s] \Rightarrow [x \Rightarrow false]).$

We omit the proof here, because it has been recorded before.

In fact, the implications in (1a) and (1b) are genuine equivalences. A proof of this was discussed by the Club as well. We may come back to this proof obligation later.

Remark.

Now, the theorem that was the incentive for writing this note, is a "combination" of (1a) and (1b), just like (0c) is a combination of (0a) and (0b):

(1c) r left-founded
$$x = r_{i,x} \cdot y \cdot x_{i,s} = [x = x_{r_{i,y}} \cdot y_{s,s}]$$

Note that, again, under the assumption that *false and false* equal J, properties (1a) and (1b) are instances of (1c): fortunately, false is a well-founded relation.

New we are done, provided we can discard the assumption [*r; x = x], which more or less presented itself because of our wish to apply (1b). It definitely isn't a theorem, not even for left-founded r; in fact, left-founded ness has nothing to do with it, as will become clear shortly. Let us investigate the situation in a somewhat more general way.

Intermezzo. The situation we are in is as follows. We want to prove something of shape [A = B], but sofar we have only proved $[p \Rightarrow (A = B)]$, for some p, i.e. we've proved $[p \land A = p \land B]$. This shows that we have reached our goal if we can prove both $[A \Rightarrow p]$ and $[B \Rightarrow p]$.

Intermezzo.

WF233/AVG141-4

The Intermezzo shows that (1c) is akay provided we can prove

(2)
$$[x = r; x \vee y \vee x; s] \Rightarrow [*r; x = x]$$
 and

(3)
$$[x = *r;y;s*] \Rightarrow [*r;x = x]$$
.

Indeed we can. The validity of (2) is based on the validity of

(4) if $[r; x \Rightarrow x]$ then $[*r; x \Rightarrow x]$, which is a useful property in its own right, and the validity of (3) follows from property [*r; *r = *r]. (The detailed proofs are left to the reader.)

Now we have finally completed the proof of theorem (1c).

Waalre, 11th December 1996 W.H.J. Feijen A.J.M. van Gasteren