The Joy of Formula Manipulation

W.H.J. Feijen!

Department of Mathematics and Computing Science, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands

Abstract

In mathematical circles, there is the overall opinion that formulae, in their capac-
ity of syntactic units, are dead things, and that formula manipulation tears the
heart out of mathematics. In these circles, formulae largely live by virtue of what
they stand for, of what they mean, of how they feel and appeal to our intuition—
our(?) intuition? And their meanings then tell which formulae to consider next.
Poor Leibniz, poor Lagrange, poor Boole, poor Hilbert, and all others who shifted
their attention towards uninterpreted formulae manipulation: they were all wrong,
weren’t they? Oh, and poor we, Edsger W. Dijkstra and all those programmers
who converted themselves to formulae manipulators, because their profession de-
manded it. (This cultural gap in doing mathematics was once expressed quite aptly
by Dijkstra when he remarked, “Ik hou van wiskunde, maar spaar me de mathe-
maten.” [“I love mathematics, but it’s the mathematicians I cannot stand.”])

Well, our profession of programming demanded a conscious and active engage-
ment in formula manipulation and therefore we entered that field of endeavour;
and we learned how mighty and powerful, how prosperous and effective, and how
indicative of designing this change in attitude turned out to be, not only for the
benefit of programming, but for vast parts of mathematics as well. And moreover,
we learned to enjoy the activity.

In this note we try to convey the effectiveness and joy of formula manipulation
through a small number of simple examples from both mathematics and program-
ming.

Dedicated to prof.dr. Edsger W. Dijkstra
on the occaston of his 70th birthday
and/or his retirement.

1 E-mail: wfQwin.tue.nl

Preprint submitted to Elsevier Preprint May 2000

0 Introducing Floor and Ceiling

In a highly respectable book on Concrete Mathematics [0], we can find an
entire chapter devoted to the standard mathematical functions |-| (floor)
and [-] (ceiling). The chapter begins with a three-page introduction of the
functions, stating and proving their most prominent properties, and then it
proceeds with an impressive amount of applications (of over thirty pages). The
three-page introduction concludes with the following passage, in which z is
real and n is integer:

«

r<n & |z|<n, (a)
n<r & n<|z (b) (3.7)
r<n < [z]<n, (c)
n<zr & n<|z|. (d)

These rules are easily proved. |...]

It would be nice if the four rules in (3.7) were as easy to remember as they
are to prove. [...]".

The passage feels as if the authors, though fully aware of the importance of the
rules, only let them in as an afterthought, since, apparently, they are so difficult
to remember and, therefore, so difficult to use. The suggestion is, however,
unfortunate since rules (3.7.d) and (3.7.c) can serve as a beautiful starting
point to uncover all properties of floor and ceiling, as we shall demonstrate
next.

Functions |-] and [-] are each of type R—2Z (real to integer) and by defi-
nition they satisfy

(0a) n<l|z|] = n<z
(0b) [z]<n = z<n , for neZ ,zeR .

These are the aforementioned rules (3.7.d) and (3.7.c) respectively. The other
two rules in (3.7) emerge by just negating both sides of the above equivalences:

(la) |z|]<n = z<n

(Ib) n<fz| = n<z .

Of (0a) and (Ob), we only need firmly remember one, since the other is the
dual (with < and > , and floor and ceiling interchanged).

Remark. Rules (0) are examples of so-called Galois-connections: for partial
orders < and LC , functions f and g of the appropriate types are “Galois-
connected” whenever

fx<y = zCgy (Vz,y) .

Galois-connections abound in mathematics, and it was R.C. Backhouse who
strongly advocated their importance.
End of Remark.

In what follows, we mainly focus on |[-]. In order to reassure the reader
that (0a) indeed captures the traditional floor, we show that it implies the
traditional definition

“|x] is the greatest integer that is at most z” |
which —rendered formally— is
(i) (Vn:n<z:n<|z|) and

(ii) lz] <z :

(1) is just one half of (0a), viz. the implication from right to left;

(ii) follows from (0a) instantiated with n:=[z].

The reader may check that, the other way around, (0a) follows from (i) and

(ii) .

In spite of the equivalence between (0a) and the pair (i, ii) , the greater simplic-
ity of (0a) should not be ignored lightly. Thanks to its succinct and vigorous
shape, it offers strong guidance in the arrangement and design of calculations.
We shall demonstrate this through a number of examples.

* * *
(2) |-] is a contracting closure with respect to < , i.e.
(2a) |z|<=z % |-] is contracting,
(2b) |z|<|y] = =<y % |-] is monotonic,
(2¢) |lz]] = |=] % |-] is idempotent.

Re (2a) Follows from (0a) with n := |z].

Re (2b) lz] < [y]
= { (0a) with n,z := |z],y }
lz] <y
< { (2a) and transitivity of < }
<y .
Re (2c) e |[|z]|]|<|z], since |-]| is contracting;
e |z|]<||z]]|, from (0a) with n,z = |z], [z] .
End of Re’s.

Remark. For someone who happens to know that property
fx<y = fax<fy (Ve,y)

captures that f is a contracting closure, the proof of (2) is just a walk-over:
lz]<y = |z]<|y]

is (0a) with n,z := [z],y.

End of Remark.

* * *
(3) n=lz] = n<z A zx<n+l
shown as follows:
n < |z lz] <n
= { (0a) } = { integers }
n<w |lz] <n+1
= { (1la) with n:=n+1 }
r<n+1 ,

and now conjoin the two established equivalences.

Xx Xx *

(4) lz+n| = |z]+n .

We prove this by an appeal to the following “rule of indirect equality”
c=d = (Vm::m<c=m<d) .

With ¢,d := [z+n]|, |z|+n we thus observe that for any integer m

m < |z+n]
{ (0a) }
m<z+n
{ algebra }
m—n<ux
{ (0a) }
m—n < |z]
{ algebra }
m < |z|+n .

Remarks

a. The appeal to the rule of indirect equality is not a rabbit pulled out of the
magic hat: the rule belongs to the standard repertoire of the calculating
mathematician.

b. The other rule of indirect equality reads
c=d = (Vm::c<m =d<m) ,

but we used the above one because the inequalities in it so nicely match
the inequalities in (0a) .

c. The above proof is of the type “there is hardly anything else you can do”.
This is largely caused by the compelling shape of (0a) which leaves us
with hardly any manipulative freedom.

End of Remarks.

(5) |lz]+ 1yl < lz+y]

This can be shown in a variety of competing ways.

a. By an appeal to the following “rule of indirect inequality”:

c<d = (Vm::m<c=m<d) ,

With ¢,d := |z|+|y],|z+y] we thus observe that for any integer m

m < |z+y]|

{ (0a) }

m < Tty

= { |-] is contracting }
m < |z]+ [y]

b. Or more directly, as follows:

lz]+[y] < lz+y]
= {(0a)}
lz]+|y] < z+y
= { algebra }
lz] <z A |y]<y
{ |-] is contracting }

true .

c. Etcetera.

X X *

®) Foro<a, [\/e]] = V5l

The proof is by indirect equality. For any integer m ,0<m, and for any
x,0<z, we observe

|z]]

e
alge
Ed
(0a) }

2§$

3
IN

Il
,—Aﬂl/\f—HV\ —~~

ebra, using 0<m }

{ algebra, using 0<m and 0<z }
m < ./x

{ (0a) }
m < [V

Remark. By restricting ourselves to the use of (0a), the three appeals to it in
the above calculation are pretty predictable and unavoidable, since (6) itself

contains three distinct references to function |-|.
End of Remark.

(7) This is a question: for «, 3 € R, how many integers are contained
in the two-sided open interval («..3)?

The answer is (#n:: a<n A n<f), and let us now manipulate the term of
this quantified expression:

a<n N n<pf

{ (1a) with z .=« }
laj]<n A n<f

{ (1b) with z := 3 }
laj<n A n<|f]

{ integers }
lal+1<n A n<|[B] ,

and since both |a] and [3] are integer, the answer is

([B]—|a]—1) max O .

Xx Xx *

And herewith we conclude our introduction to |-] and [-], which was based
on Galois-connections (0) only. Most of the examples were taken from [0],
which contains a wealth of additional material, fit for the kind of calculational
games we have been playing here.

1 DO and The Invariance Theorem

In a highly respectable book on Predicate Calculus and Program Semantics
[1], we can find an entire chapter devoted to the semantics of the repetitive
construct. The heart of the chapter contains a proof of the “Main Repetition
Theorem”, better known as The Invariance Theorem for the repetition. The
proof extends, not including the preparatory work, over nearly four pages.
And then the text proceeds with the following passage:

“The Main Repetition Theorem involves well-founded sets because it deals

with wp.DO, which captures guaranteed termination of the repetition.
Since wlp.DO is not concerned with guaranteed termination, we may ex-
pect wlp.DO to be simpler to deal with than wp.DO.”

The passage feels as if the authors, not quite happy with the relative length
of their proof, will next address the Invariance Theorem in the wlp-semantics.
Quod non, and hence this little section.

* * *

We consider program DO given by
DO = doB — Sod .

From our operational understanding of a repetition, we know how to unfold
it, and in doing so once, we find that

DO = if =B — skip
[B — S;DO
fi

By Leibniz and the usual wip-semantics for the if-statement and the compo-
sition, we conclude

[wlp.DO.S = (BVR) A (=BVwlp.S.(wip.DO.R)) | .
Hence, wlp.DO.R solves equation
X:[X = (BVR) AN (-BVuwpSX)] .

Because wlp.S is monotonic, the right hand side of this equation is monotonic
(in X) as well, and therefore the equation has extreme solutions. By definition,
wlp.DO.R is its weakest solution. By Knaster-Tarski?, wilp.DO.R therefore
enjoys the following extremity property:

(VX:: [X = (BVR)A(mBVwlp.S.X)]
(*) =

[X = wlp.DO.R]) .

Now, let us manipulate the term’s antecedent with the purpose of disentan-
gling it:

[X = (BVR) A (-BVuwlp.S.X) |
= { (X=) and [-] over A }

2 see e.g. [1]

[X = BVR] AN [X = -BVuwlp.S.X]
{ shunting }
[XAN-B=R] AN [XAB=uwlpSX] .

And this latter expression is quite reminiscent of the intimate relationship
between wlp’s and Hoare-triples:

{P}S{Q} = [P=wp.SQ] .

By the above calculation, extremity property (x) rendered in Hoare-triple

format reads:

(VX:: [XAN-B=R] N{XAB}S{X}
=
{X}DO{R}) .

or, in the traditional format of an inference rule,

[XAN-B=R], {XAB}S{X}
{X}DO{R}

C.A.R. Hoare’s famous Theorem of Invariance.

X X *

A few final remarks are in order.

e By definition, wp.DO.R is the strongest solution of the equation of which
wlp.DO.R is the weakest solution. The demonstrandum in the Invariance
Theorem is { X } DO{ R}, or rather

[X = wlp.DO.R] ,

and from this we see that there is no use for the extremity property of
wp.DO.R, which is a strongest solution. And indeed, in proving the In-
variance Theorem, [1] only uses that wp.DO.R solves the equation. In our
wlp-context we only used the extremity property, and this difference might
be food for further thought.

One may wonder by what kind of traditional mathematical intuition it could
become apparent that the extremity property of wip.DO.R equivales the
Theorem of Invariance (in spite of the fact that the formal calculation is so
remarkably simple).

The simplicity with which the Invariance Theorem emerges from the def-
inition of wlp.DO casts doubts on the adequacy of the concept wp. And

indeed, also in everyday practice, the programmer almost always chooses
his variant function to start with, and only then will he be bothered by
invariances, thus fully separating the concerns of progress and partial cor-
rectness.

References

[0] Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete
Mathematics (2nd ed.), Addision-Wesley Publishing Company, 1994.

[1] Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus and Program
Semantics, Springer Verlag, New York, 1990.

10

